
PNAS  2024  Vol. 121  No. 26 e2319811121� https://doi.org/10.1073/pnas.2319811121 1 of 9

RESEARCH ARTICLE | 

Significance

The enormous variation space 
and obscure syntax rules of 
eukaryotic transcriptional 
regulatory DNA sequences 
hamper their rational design. 
Here, we developed PhytoExpr, a 
deep learning framework that 
reads regulatory DNA sequences 
to predict their messenger 
ribonucleic acid (mRNA) 
abundance and also the plant 
species they are from. PhytoExpr 
was trained over major clades of 
the plant kingdom to make 
predictions on unseen gene 
families from unseen species. 
The sequence features learned 
by PhytoExpr were enriched with 
conserved noncoding sequences, 
transcription factor binding sites, 
and eQTLs. We also fit PhytoExpr 
into two algorithms for the 
rational design of functional 
cis-regulatory variants for 
genome editing, as well as the de 
novo design of species-specific 
cis-regulatory DNA sequences for 
synthetic biology.
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Rational design of plant cis-regulatory DNA sequences without expert intervention or 
prior domain knowledge is still a daunting task. Here, we developed PhytoExpr, a deep 
learning framework capable of predicting both mRNA abundance and plant species using 
the proximal regulatory sequence as the sole input. PhytoExpr was trained over 17 species 
representative of major clades of the plant kingdom to enhance its generalizability. Via 
input perturbation, quantitative functional annotation of the input sequence was achieved 
at single-nucleotide resolution, revealing an abundance of predicted high-impact nucleo-
tides in conserved noncoding sequences and transcription factor binding sites. Evaluation 
of maize HapMap3 single-nucleotide polymorphisms (SNPs) by PhytoExpr demonstrates 
an enrichment of predicted high-impact SNPs in cis-eQTL. Additionally, we provided two 
algorithms that harnessed the power of PhytoExpr in designing functional cis-regulatory 
variants, and de novo creation of species-specific cis-regulatory sequences through in silico 
evolution of random DNA sequences. Our model represents a general and robust approach 
for functional variant discovery in population genetics and rational design of regulatory 
sequences for genome editing and synthetic biology.

transcriptional regulation | deep learning | cis-engineering | synthetic biology

A comprehensive understanding of the genetic commands embedded within the 
cis-regulatory sequences is crucial for accurate discovery and design of functional cis-acting 
variants, as well as de novo creation of cis-regulatory sequences. Nonetheless, the immense 
variation space of cis-regulatory sequences and relatively limited knowledge of their 
associated syntax rules present translational challenges (1). In the last 20 y, advances in 
molecular biology, population genetics, and comparative genomics have provided critical 
insights into the mechanism of cis-elements and their regulatory logic in plants.

In the field of molecular biology, high-throughput sequencing-based methods, such as 
chromatin immunoprecipitation followed by sequencing (ChIP-Seq), assay for transposase- 
accessible chromatin with high-throughput sequencing (ATAC-Seq), and Hi-C, have been 
widely utilized in diverse plant species to annotate functional cis-elements (2, 3). However, the 
volume of data is relatively small compared to that of the ENCODE project in human and 
mouse genome research (4). Measuring the expression of synthetic regulatory sequences in 
massively parallel reporter assays has proved successful in plants, particularly crop species (5–8). 
These datasets offer valuable insights into the intricate architecture of cis-regulatory sequences 
in plants. Nevertheless, it is worth noting that several novel mechanisms initially discovered 
in animal and human cells are relatively underexplored in plants. These include enhancer–pro­
moter interactions reliant on phase separation (9), transcriptional bursting (10), specificity and 
robustness conferred by suboptimal transcription factor binding sites (TFBSs) (11), and the 
trade-off between precision and economy in gene expression (12).

In the realm of crop population genetics, a considerable number of cis-regulatory variants 
underlying crop domestication and improvement traits have been cloned and functionally 
validated (13). Cis-expression quantitative trait loci (cis-eQTL) was also identified in several 
crop populations (14, 15). However, given finite population size, association and linkage 
analysis can only detect common alleles exerting large effects, leaving rare alleles or small-effect 
alleles largely unexplored. Furthermore, precise identification of causal variants is often 
challenging due to the presence of linkage disequilibrium. Comparative genomics has aided 
the discovery of cis-elements at a broader scale. Through comparisons of phylogenetically 
related plant species, conserved noncoding sequences (16, 17) and deleterious cis-variants 
(18, 19) have been identified. This technique however requires a substantial number of D
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genomes for optimal sensitivity and accuracy (20). In addition, 
deleterious cis-variants were found associated with dysregulation of 
gene expression and reduced overall fitness (15).

Despite the limited knowledge of cis-regulatory logic desired 
for precise manipulation of gene expression, promoter editing 
has been successfully applied in crop improvement (21–26). 
Commonly a large pool of diverse cis-regulatory alleles was gen­
erated, followed by identification of favorable alleles through 
resource-intensive phenotypic selection. De novo design of 
regulatory DNA sequences for plant synthetic biology presents 
yet another formidable challenge. Simple organisms such as  
E. coli and yeast exhibit short edit-distances between random 
sequences and functional promoters (27–29), facilitating efficient 
de novo promoter design by deep generative networks (30, 31). 
However, in more complex organisms such as higher plants, de 
novo design of cis-regulatory sequences is much more complex 
due to their extensive lengths and an absence of suitable compu­
tational tools.

In this study, we trained and tested a deep learning framework 
termed PhytoExpr over ~0.6 million regulatory sequences from 
17 plant species to implicitly learn both general and species-specific 
regulatory syntax rules. Remarkably, PhytoExpr managed to iden­
tify sequence features aligning with functional annotations, such 
as conserved noncoding sequences, TFBSs, and cis-eQTL even 
though it had never been exposed on such datasets. Furthermore, 
we showed that PhytoExpr can be effectively used for functional 
cis-variant discovery and design, as well as de novo design of reg­
ulatory sequences.

Results

Modeling Proximal cis-Regulatory Sequences Using Solely 
Sequence Information and Gene Expression Data. In the case 
of the human and mouse, accurate prediction of gene expression 
levels from cis-regulatory sequences, as demonstrated by ExPecto 
(32), Basenji (33, 34), and Enformer (35), requires thousands of 
high-quality annotation datasets detailing noncoding regions, such 
as histone marks, TFBSs, and DNA accessibility profiles. Such 
strategies are not readily applicable to plants, as datasets of such 
scale, magnitude, and quality are yet to be developed. Therefore, 
we aimed to develop models capable of forecasting mRNA 
abundance solely using transcriptome datasets. To better capture 
the enormous variation space of cis-regulatory DNA sequence in 
the plant kingdom, ~0.6 million protein-coding genes from 17 
phylogenetically diverse plant species (Fig.  1A, summarized in 
Dataset S1) were used to train and test the models in this study 
(referred to as PhytoExpr hereafter).

To prepare the RNA sequencing (RNA-seq) datasets for 
PhytoExpr, raw reads of 6,256 samples originating from 17 
plant species (Dataset S2) were acquired from the National 
Center for Biotechnology Information (NCBI) Sequence Read 
Archive (SRA) database and analyzed using a unified pipeline. 
To simplify the complexities of spatiotemporal gene expression 
patterns, a virtual representation called “median sample” was 
created for each species by extracting the median expression 
level for each gene across all RNA-seq samples within that spe­
cies. These “median samples” were positioned at the center of 
Principal Component Analysis (PCA) plots (SI Appendix, 
Fig. S1A) and could thus be considered as a composite of various 
tissue types. Notably, these “median samples” exhibited strong 
correlations with the actual RNA-seq samples utilized during 
their construction, with most Pearson correlation coefficients 
surpassing 0.8 (SI Appendix, Fig. S1B). To evaluate the robust­
ness of these “median samples,” extensive simulations were 

conducted by incorporating different numbers of RNA-seq 
samples to establish them. The results showed that “median 
samples” stabilized after incorporating as few as 50 RNA-seq 
samples (SI Appendix, Fig. S1C).

The significance of proximal regulatory regions in plant 
cis-engineering and transcriptional regulation surpasses that of 
distal regions, as supported by three findings: 1) Across all the 
17 plant species studied, genes positioned in close vicinity (<8 
kb) are more likely to be coexpressed compared to those located 
farther apart, although this pattern is weaker in maize than in 
other plant species (SI Appendix, Fig. S2A). 2) An analysis of 
ChIP-Seq data from a prior study on maize cistrome (2) indi­
cated that about 70% of TFBSs were positioned within 4 kb of 
transcription start sites (TSS) or transcription termination sites 
(TTS) (SI Appendix, Fig. S2B), despite the sparser distribution 
of cis-elements in maize relative to species with smaller and more 
compact genomes. 3) A former eQTL analysis (15) showed that 
about 50% of lead SNPs in cis-eQTL peaks were within 4 kb 
of the nearest gene (SI Appendix, Fig. S2C). Based on these 
observations, PhytoExpr considered 5 kb promoter (ranging 
from 4 kb upstream of TSS to 1 kb downstream of TSS) and 5 
kb terminator (ranging from 1 kb upstream of TTS to 4 kb 
downstream of TTS) of each gene as the input (Fig. 1B), cov­
ering 14.57 to 85.29% of total genome sizes, depending on the 
species analyzed (Dataset S1).

PhytoExpr Achieved the Highest Accuracy When Employing 
Multispecies and Multitask Learning with a Transformer 
Architecture. To ensure an unbiased evaluation of the predictive 
accuracy of PhytoExpr, it was trained and tested using a fivefold 
cross-validation scheme in a gene family-aware fashion (36): The 
model was tested on gene families not used in training (Fig. 1B). 
Two model architectures were utilized (SI Appendix, Fig. S3). The 
first architecture is based on ensemble learning: A linear model was 
stacked on top of 27 parallel but architecturally distinct convolution 
neural networks (CNNs) to integrate their predictions (referred to as 
CNN+stacking hereafter). The second architecture was a transformer 
with multihead attention (referred to as transformer hereafter). 
Hyperparameters of both architectures were fine-tuned by random 
forests (Dataset S3).

For each architecture, four designs of the PhytoExpr framework 
were evaluated (Fig. 1C). We first tried training and testing 
PhytoExpr on individual species (design A) or all of the 17 species 
(design B). Notably PhytoExpr trained using design B showcased 
significant greater accuracy than that of design A, evident from 
significantly higher R-Squared (R2) and lower mean squared error 
(MSE) (Fig. 1D). We further speculated that using multiple species, 
while beneficial for PhytoExpr to learn general cis-regulatory logic 
in the plant kingdom, may also incur a penalty in model perfor­
mance, as the data are confounded by species-specific regulatory 
logic. Thus, we modified design B to predict both mRNA abun­
dance and plant species (termed design C), resulting in a consid­
erable improvement of PhytoExpr’s predictive accuracy of mRNA 
abundance (Fig. 1D). The transformer architecture outperformed 
CNN+stacking for design B and C, but not for A, likely due to the 
small size of each CNN in the CNN+stacking architecture being 
more suitable for handling small datasets (Fig. 1D).

We further evaluated whether the accuracy of the transformer 
architecture on design C was associated with the dispersion of 
gene expression levels across RNA-seq samples. As shown in 
SI Appendix, Fig. S4, although MSE is positively correlated with 
median absolute deviation (MAD) of gene expression, such pos­
itive association is absent between MSE and MAD divided by 
median expression level (MADM), indicating that the accuracy D
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of the transformer model is unaffected by the relative dispersion 
of gene expression levels. We also reported the mean absolute error 
and median absolute error, two metrics that are comparable to the 
target variable (i.e., log10-transformed median expression level) 
(SI Appendix, Fig. S5).

In a previous study in yeast, codon frequencies and mRNA 
features (lengths of 5′UTR, ORF, and 3′UTRs, GC content of 
5′UTR and 3′UTRs, and GC content at each codon position in 
the ORF), when used together with cis-regulatory sequences as 
predictors of gene expression levels, significantly enhanced the 
model accuracy, compared with using cis-regulatory sequences as 
the sole predictor (37). In plants, we found that although codon 
frequencies and mRNA features each explained a small 

proportion of the variation in gene expression, they did not 
enhance model accuracy when used together with regulatory 
sequences (SI Appendix, Fig. S6).

In design C, the model assigned a probability to each species 
for every input DNA sequence, indicating the likelihood of the 
input sequence originating from that species. For both architec­
tures, the averaged top-1 accuracy (i.e., the true species received 
the highest probability) was above 85%, and the averaged top-2 
accuracy (i.e., the true species was among the top-2 guesses made 
by the model) was above 95% (Fig. 1E). These outcomes indicate 
that PhytoExpr has effectively learned species-specific signals in 
input sequences. Once again, the transformer architecture exhib­
ited superior performance in comparison to the CNN+stacking 
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Fig. 1.   Deep learning-based prediction of mRNA abundance and plant species with proximal regulatory sequence as the sole input. (A) 17 phylogenetically diverse 
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architecture. Interestingly, design C displayed significantly higher 
accuracy than design D, where PhytoExpr was exclusively trained 
to predict species information, highlighting the effectiveness of 
multitask learning. In design C, most top-1 errors were attributed 
to phylogenetic relatedness. For example, Setaria italica sequences 
that were incorrectly predicted to be originating from its wild 
ancestor, Setaria viridis, comprised 30% of all top-1 errors 
(SI Appendix, Fig. S7).

PhytoExpr Is Generalizable to Unseen Gene Families from 
Unseen Plant Species. Given the generalizability of PhytoExpr 
to unseen gene families (gene family-guided data splitting in 
Fig. 1B), we further asked whether PhytoExpr can be generalizable 
to unseen gene families from unseen species not used in model 
training. We retrained the design C models (i.e., predicting both 
mRNA abundance and plant species) using 16 of the 17 species 
and then tested the models on held-out gene families from the 
held-out species. In most cases, the predictive accuracies for 
mRNA abundance were similar to those achieved while using all 
the 17 species (Fig. 2). The only exception was Chlamydomonas 
reinhardtii: Models that were not trained on C. reinhardtii had no 
predictive accuracy for this species, probably due to its very early 
divergence from the other 16 species and unique cis-regulatory 
logic. Across all scenarios, the transformer architecture consistently 
outperformed the CNN+stacking architecture. Design C models 
also provided species information as part of output. Notably, 
when making prediction on sequences from a new species, the 
design C models predominantly suggested closely related species 

(SI Appendix, Fig. S8), indicating that PhytoExpr implicitly learned 
the phylogenetic relationship among the species incorporated 
during model training. In summary, PhytoExpr generalizes well 
to unseen species that share evolutionary relations with the species 
included in the initial model training.

PhytoExpr-Derived Nucleotide Importance Scores Associated 
with Conserved Noncoding Sequences, TFBSs, and cis-eQTLs. 
As the design C model with a transformer architecture was most 
accurate, all the downstream analysis was conducted based on 
this model (referred to as PhytoExpr hereafter). To evaluate the 
importance of each nucleotide, we employed PhytoExpr (with 
the transformer architecture and design C) to predict mRNA 
abundance from the original sequence and a sequence in which 
that nucleotide was occluded (i.e., represented as four zeros in 
on-hot encoding). The importance score of the nucleotide was 
calculated as the difference between the two predicted expression 
levels, and nucleotides with strong positive or negative effects 
on gene expression were considered as high-impact nucleotides 
(Fig. 3A). We computed the importance score of each nucleotide 
in the cis-regulatory regions of each maize gene, and noted an 
enrichment of high-impact nucleotides near TSS or TTS (Fig. 3B). 
We hypothesized a potential association between the importance 
score and functional annotation data for regulatory regions 
although PhytoExpr had never been trained on such datasets. We 
first compared the importance scores with pan-Andropogoneae 
conserved noncoding sequences (pan-And-CNS). The maize pan-
And-CNS was curated by aligning the noncoding sequences of  
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maize with those of five other Andropogoneae species (Sorghum 
bicolor, Miscanthus sinensis, Saccharum spontaneum, Hyparrhenia 
diplandra, and Chrysopogon serrulatus) spanning approximately 
18 My of divergence (16). The conservation level of a nucleotide 
in a CNS was defined as the number of species in which this 
nucleotide was conserved (referred to as “CNS depth”) (Fig. 3C). 
Notably, nucleotides that were conserved in all the five species 
(i.e., CNS depth = 5, also referred to as core-And-CNS) exhibited 
a significant enrichment of high-impact nucleotides (Fig.  3D). 
Additionally, we compared the importance scores with a pre­
viously published ChIP-Seq dataset comprising genome-wide 
TFBSs of 104 TFs (2). We defined “TFBS depth” of a nucleotide 
as the number of TFBSs covering this nucleotide (Fig. 3E). We 
observed a significant enrichment of high-impact nucleotides in 
TFBSs (Fig. 3F). However, such enrichment was not evident for 
nucleotides with very high TFBS depth (i.e., TFBS depth ≥ 60)  
(Fig.  3F), likely due to these “hyper-ChIPable regions” being 
artifacts of ChIP-Seq experiments (38). We further evaluated 
whether PhytoExpr effectively scores the importance of nucleotides 
in transposable element (TE) regions. A comprehensive annotation 
of maize TEs was downloaded from https://github.com/mcstitzer/
maize_TEs. Although TEs were depleted in CNS and TFBS regions 
(SI Appendix, Fig. S9 A and C), a significant enrichment of high-
impact nucleotides in CNS and TFBS was observed in both non-
TE and TE regions (SI Appendix, Fig. S9 B and D). These results 
suggested that PhytoExpr identified important nucleotides in both 
non-TE and TE regions.

The maize HapMap3 database encompasses 83 million variant 
sites (67% of them with MAFs < 5%) identified by whole genome 
resequencing of 1,218 diverse maize varieties worldwide (39). 
Among these SNPs, 17.3 million SNPs (63% of them with MAFs 
< 5%) were within the regulatory regions investigated in this study. 
PhytoExpr was deployed to evaluate the impact of each of the 17.3 
million SNPs on gene expression (referred to as the SNP effect 
score) (SI Appendix, Fig. S10A). SNPs with large positive or nega­
tive effects on gene expression were enriched with rare variants 
(MAF < 0.01), implying that large-effect variants may undergo 
purifying selection (SI Appendix, Fig. S10B). We also observed a 
strong correlation between SNP effect score and the distance to 
TSS or TTS (SI Appendix, Fig. S10C). We further postulated that 
large-effect SNPs predicted by PhytoExpr might exhibit stronger 
associations with the variation in gene expression levels in natural 
populations, despite PhytoExpr had not been prior trained on pop­
ulation genetics datasets. In a previous comprehensive analysis of 
eQTL based on the transcriptome profiles from 7 tissues across 282 
diverse maize inbreds, common cis-regulatory variants (MAF > 
0.05) significantly associated with variations in gene expression 
levels were identified (15). We defined the rank of a SNP based on 
its position in a cis-eQTL peak on the Manhattan plot: The peak 
SNP was assigned with a rank of 0, while unassociated SNPs were 
marked as “not significant” (SI Appendix, Fig. S10D). Indeed, we 
found that predicted large-effect SNPs (with either positive or neg­
ative impact on gene expression) were notably enriched with SNPs 
holding high ranks in cis-eQTL peaks (SI Appendix, Fig. S10E), 
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Fig. 3.   Quantitative functional annotation of proximal regulatory regions at single-nucleotide resolution. (A) To quantify the importance of a nucleotide in the 
regulatory sequence, PhytoExpr with the transformer architecture was used to predict mRNA abundance from DNA sequence, as well as from the same sequence 
in which this nucleotide is occluded. The importance score of the nucleotide was defined as the difference between the two predicted expression values.  
(B) Distribution of importance scores along regulatory sequences of all maize genes. (C) The CNS depth of a nucleotide is defined as the number of species in 
which this nucleotide is conserved. (D) The relationship between importance score and CNS depth in maize. Maize pan-Andropogoneae CNS was from a previous 
study (16) by comparing the noncoding regions of maize and five other Andropogoneae species representing ~18 My of divergence. (E) The TFBS depth of a 
nucleotide is defined as the number of transcription factors with a binding site overlapping this nucleotide. (F) The relationship between importance scores and 
TFBS depths in maize. ChIP-Seq datasets were from a previous maize cistrome study on 104 TFs (2).

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 "
C

O
R

N
E

L
L

 U
N

IV
E

R
SI

T
Y

, E
-R

E
SO

U
R

C
E

S 
A

N
D

 S
E

R
IA

L
S 

M
A

N
A

G
E

M
E

N
T

" 
on

 J
un

e 
24

, 2
02

4 
fr

om
 I

P 
ad

dr
es

s 
13

2.
23

6.
17

0.
13

2.

https://github.com/mcstitzer/maize_TEs
https://github.com/mcstitzer/maize_TEs
http://www.pnas.org/lookup/doi/10.1073/pnas.2319811121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2319811121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2319811121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2319811121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2319811121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2319811121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2319811121#supplementary-materials


6 of 9   https://doi.org/10.1073/pnas.2319811121� pnas.org

affirming the effectiveness of PhytoExpr in prioritizing causal 
cis-regulatory variants.

PhytoExpr Facilitates Rational Design of cis-Acting Variants and 
De Novo Creation of Species-Specific Regulatory Sequences. 
We further designed two strategies for the rational design of cis-
acting variants, and de novo creation of species-specific regulatory 
sequences. Fine-tuning of gene expression by cis-engineering has 
been proven an effective strategy for crop improvement. While a 
single nucleotide mutation is feasible using base editors, often such 
manipulations do not really translate into significant alterations 
of mRNA abundance. As a result, our aim was to design for each 
target gene a single small deletion that can be easily created by 
the CRISPR/Cas9 system with two gRNA cassettes, or a small 
replacement that can be achieved by prime editing.

To accomplish this, we introduced an algorithm termed impor­
tance score-guided semi-brute force that made semi-random small 
deletions on the input sequence. The impacts of these deletions 
on mRNA abundance were then evaluated using PhytoExpr. In 
order to minimize the search space, in silico deletions were 
restricted to regions with high average importance scores (Fig. 4A). 
We applied this strategy to design up-regulated promoters for two 
maize genes, as well as down-regulated promoters for two other 
maize genes (Fig. 4B). The transcriptional activity of the designed 
sequences was confirmed by the dual-luciferase transcriptional 
activity assay conducted in maize protoplasts (Fig. 4C).

The other strategy involved using PhytoExpr as the selection 
operator within the genetic algorithm to evolve species-specific 
regulatory sequences in a desired direction (i.e., either higher or 
lower expression level) (Fig. 4D and SI Appendix, Fig. S11). We 
first tried this idea in Arabidopsis as an example. We started with 
1,000 entirely random 10 kb DNA sequences (denoted as 
Generation 0) and aimed to evolve a 2 kb target region (2 kb to 
4  kb). In each generation, sequences that demonstrated both a 
stronger predicted transcriptional strength and higher similarity to 
Arabidopsis had more chance to propagate themselves (Fig. 4E). We 
specified a target species during in silico evolution to facilitate the 
emergence of cis-regulatory elements specific to this target species. 
After 500 generations of evolution, a 2 kb sequence was randomly 
chosen from Generation 0 and Generation 500, respectively, chem­
ically synthesized, fused to a minimal CaMV 35S promoter fol­
lowed by eGFP, and transiently expressed in Arabidopsis seedlings. 
The procedure was replicated three times. The three sequences from 
Generation 500 conferred strong eGFP fluorescence signal com­
parable to that from the full-length CaMV 35S promoter, whereas 
sequences from Generation 0 did not produce detectable eGFP 
fluorescence (Fig. 4F and Dataset S4). We also tested this strategy 
in maize. In total 20 cis-regulatory sequences (270 bp in length) 
were evolved, synthesized, and inserted between an eGFP coding 
sequence and a NOS terminator (SI Appendix, Fig. S12A). This 
allowed us to quantify the strength of each evolved sequence by 
conducting a small-scale self-transcribing active regulatory region 
sequencing (STARR-Seq) in maize protoplasts. The 35S enhancer 
and 13 known strong endogenous maize enhancers from a previous 
study (40) were used as positive controls in the STARR-Seq assay. 
The STARR-Seq was conducted three times, with high reproduc­
ibility among biological replicates (SI Appendix, Fig. S12 B–D). All 
the 20 evolved sequences exhibited detectable activity, with some 
of them as strong as natural enhancers (SI Appendix, Fig. S12E). As 
these evolved sequences are short (270 bp) and easy to handle in 
vector construction, they are potentially useful in plant synthetic 
biology.

We further employed this strategy to enhance the transcrip­
tional strength of three maize endogenous promoters. For each 

gene, we focused on evolving a 50 bp region (150 to 200 bp 
upstream of TSS) to ensure compatibility with current prime edit­
ing tools (Fig. 4 G and H). The targeted DNA region passed 
through 60 generations of evolution, and dual-luciferase transcrip­
tional activity assays performed in maize protoplasts confirmed 
that the evolved promoters were indeed significantly stronger than 
the original wild-type promoters (Fig. 4I).

Discussion

Based on the performance of PhytoExpr on gene families and 
species not included in its training data, it is highly confident that 
PhytoExpr has learned general syntax rules governing gene expres­
sion. Gradient- and perturbation-based methods are commonly 
used to interpret the behavior of deep learning models. When 
applied to regulatory DNA sequences, these methods can assign 
an importance score to each nucleotide. However, it is widely 
accepted that high-order interactions among nucleotides are cru­
cial in gene expression control, including factors such as the spac­
ing, distance, and orientation of regulatory elements, as well as 
their additive, cooperative, competitive, and synergistic interac­
tions. Extracting such complex syntax from PhytoExpr poses 
challenges owing to the vast number of combinations of pertur­
bations. More efficient computational tools are needed to interpret 
PhytoExpr. Nevertheless, a previous study in yeast revealed that 
most regulatory interactions were weak (41), suggesting that 
single-nucleotide occlusion might suffice to unravel most, if not 
all, information learned by PhytoExpr.

PhytoExpr takes only proximal cis-regulatory sequences as its 
input without considering distal cis-elements or trans-acting fac­
tors, and it explained over 50% of the variation in gene expression, 
highlighting a more important role of proximal regulatory regions 
than distal ones. It is conceivable that incorporating distal regu­
latory sequences and trans-acting factors into the model would 
significantly expand the number of features, potentially leading 
to model overfitting, especially if the number of observations (i.e., 
the number of genes) remains constant. To mitigate this, using 
data from more plant species will be the key in the future for 
PhytoExpr to explore larger variation space to avoid overfitting. 
Cis-engineering on proximal regulatory regions seems adequate 
to reach any desired expression level, as exemplified by several 
recent promoter editing studies (21, 23, 25, 26) and our in silico 
evolution analysis. This stands in contrast to the scenario in human 
genomics, where variations in distal regulatory elements are play­
ing important roles in human disease genetics and should not be 
ignored.

In addition to refining model inputs, several other aspects can 
be improved in future research. For instance, transcriptome datasets 
utilized in this study relied on short-read Illumina platforms, which 
might be biased by PCR amplification during library preparation 
and multimapped reads. Gene expression levels could also be 
affected by imprecise gene model annotations, especially in untrans­
lated regions (UTRs). Introducing long-read RNA sequencing 
could alleviate some of these challenges. Two model architectures 
were extensively optimized for predicting mRNA abundance: an 
ensemble learning architecture and a transformer architecture. 
While the transformer architecture exhibited superior performance, 
it is plausible that more suitable architectures may exist. Another 
potential avenue involves predicting spatiotemporal expression 
patterns. Training of PhytoExpr with median expression levels may 
limit its ability to learn cis-elements conferring tissue-specificity or 
environment responsiveness. As cell- or tissue-specific gene expres­
sion and environmental responsiveness of genes are important con­
tributors of agronomic traits of crops, updating PhytoExpr with D
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single-cell transcriptome datasets in the future might be essential. 
It is also worth noting that the RNA-seq datasets used in this study 
may be enriched for particular tissue types in some plant species 
while depleted in others. And this may partly explain why models 
not trained on C. reinhardtii have little predictive power in this 
species, considering that it is a single-cell organism. Generation of 
transcriptome datasets from matched tissues for multiple species 
may improve the accuracy of PhytoExpr in the future.

Methods

RNA-seq Data Collection and Processing. The reference genomes of the 17 
plant species used in this study were downloaded from EnsemblPlants (42) or 
Phytozome (43) (summarized in Dataset S1). Raw reads were downloaded from 
the NCBI SRA in the sra format, converted to the fastq format by fastq-dump 
from the SRA Toolkit (version 2.8.2), and then quality-trimmed by Sickle (version 
1.33, https://github.com/najoshi/sickle) with default settings. Following quality 

A

B

D

E

C
F

G H I

Fig. 4.   In silico evolution of natural cis-regulatory sequences and random sequences. (A) Importance score-guided semi-brute-force approach. (B) Importance 
scores of the cis-regulatory regions of four maize genes at single-nucleotide resolution. The position of the 25 bp deletion on each gene was indicated by a 
vertical solid red line. Dashed red and blue lines indicate TSS and TTS, respectively. (C) Predicted and measured promoter strengths for wild-type and mutated 
promoters. (D) A schematic representation of in silico evolution of sequences by genetic algorithm. (E) Genetic algorithm-dependent in silico evolution of random 
sequences. Random sequences were 10 kb long to fit the input shape of PhytoExpr, and only the 2 kb to 4 kb region was subject to evolution. Evolution was 
replicated three times and a representative result was shown. (F) Sequences from Generation 0 and Generation 500 were fused with the minimal CaMV 35S 
promoter, to drive the transient expression of eGFP in Arabidopsis. The full-length CaMV 35S promoter was used as a positive control. (G) Genetic algorithm-
dependent in silico evolution of three natural maize promoters. Only the region 150 to 200 bp upstream of TSS was evolved. Yellow dots represent wild-type 
sequences, while red dots represent the sequences with the highest predicted expression level at the 60th generation. (H) The wild-type and mutated sequences 
within the 50 bp target region (marked by red dots). (I) The effect of mutations on gene expression measured by the dual-luciferase transcriptional activity assay 
in maize protoplasts. *, significant difference from the wild type (P < 0.05) by the t test.
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assessment by FastQC (0.11.5, https://www.bioinformatics.babraham.ac.uk/
projects/fastqc/), the clean reads were aligned to their corresponding reference 
genomes with HISAT2 (version 2.1.0) (44). The resulting bam files were sorted 
by SAMtools (version 1.9) (45). Read counts were normalized to Transcripts Per 
Kilobase Million (TPM) by StringTie (version 2.0) (46). TPM is used as it is propor-
tional to the relative RNA molar concentration (47). RNA-seq samples analyzed 
in this study are outlined in Dataset S2.

PCA and Coexpression Analysis. Unnormalized raw read counts of genes were 
obtained from bam files using the featureCounts function from the Subread 
package (version 1.6.2) (48). These counts were then subjected to variance sta-
bilizing transformation using the vst function from the DESeq2 package (49). 
Dimensionality reduction of RNA-seq samples by PCA was computed using the 
plotPCA function in the DESeq2 package. For each species, pairwise biweight 
midcorrelations (bicor) for all protein-coding genes were calculated using the 
bicor function from the WGCNA package (50). Bicor is a median-based measure 
of similarity and is more robust and less sensitive to outliers, compared to other 
similarity metrics such as Pearson correlation or mutual information (51).

Gene Family-Guided Splitting of Training and Test Datasets. Protein-coding 
genes from the 17 plant species were divided into gene families as previously 
described (36). Briefly, pairwise similarities among proteins were obtained by an 
all-by-all BLASTP search on our local server. Subsequently, an in-house python script 
was used to construct a graph, where nodes represented genes and edges con-
nected homologous genes. This graph was further divided into clusters (i.e., gene 
families) by the Markov clustering algorithm implemented in the markov_cluster-
ing package in Python with default parameters except that inflation was set to 1.1. 
If a gene was not assigned to any gene family, it was considered as an orphan gene 
belonging to a family with only a single member. For gene family-guided fivefold 
cross-validation, gene families were randomly partitioned into five subsamples 
with equal numbers of families. In each iteration, one subsample was retained as 
the test data, while the remaining four subsamples were used as the training set.

Model Architecture and Hyperparameter Optimization. All models were 
constructed in Python 3 using Keras 2 with a Tensorflow backend. The two model 
architectures are summarized in SI Appendix, Fig. S3. Hyperparameter optimiza-
tion are summarized in Dataset S3. As possible combinations of hyperparameters 
are numerous, it is infeasible to exhaustively evaluate them with limited compu-
tational resources. Instead, we used random forest models to optimize hyperpa-
rameters. For the CNN+Stacking architecture, 300 hyperparameter combinations 
(200 were randomly chosen and 100 were chosen based on experience) were 
evaluated. Then, a random forest model was trained and used to predict the accu-
racies for all possible combinations, and the top 300 predicted best-performing 
combinations were evaluated. Among them, the top 15 combinations for mRNA 
abundance prediction and top 15 combinations for species prediction (27 in 
total) were chosen to constitute the basal layer of the final ensemble learning 
model. A similar approach was used to optimize the transformer architecture. 
Hyperparameter tuning was conducted using an approach similar to the standard 
nested cross-validation approach. As hyperparameter tuning is too computation-
ally expensive, it was only done in Fold 1~4. The resulting model architectures 
perform similarly on each of the five folds, suggesting that the model is not biased 
toward a certain fold. For the CNN+Stacking architecture, an Adam optimizer 
with the default learning rate (0.001) was used. The 27 basal CNN branches were 
trained individually before being assembled into the full CNN+Stacking architec-
ture. For the transformer architecture, an Adam optimizer with a learning rate of 
0.0001 was used. Both models were trained with early stopping (patience = 2)  
to prevent overfitting. Models were trained on a work station equipped with four 
NVIDIA Titan RTX graphics card each with 24 GB video memory. The number of 
epochs vary, due to random initiation of model weights. It typically took ~90 h 
(~20 epochs for each basal CNN branch) to train a CNN+Stacking model, and 
~5 h (~10 epochs) to train a transformer model.

Maize Protoplast Preparation and Transient Transformation. Maize (B73) 
seeds were grown in soil at room temperature in the dark for about 12 d. The 
second leaves were cut into thin strips, and placed in 10 mL of enzyme solution 
[20 mM MES (2-morpholinoethanesulfonic acid), pH 5.7, 1.5% cellulase R-10, 
0.5% macerozyme R-10, 0.4 M mannitol, 20 mM KCl, 10 mM CaCl2, 0.1% BSA, 
and 5 mM β-mercaptoethanol]. The samples were vacuumed (0.8 MPa) for 30 min 

and then gently shaken for 3 to 4 h at 40 rpm at 25 °C in dark. For each sample, 
10 mL W5 (2 mM MES, 154 mM NaCl, 125 mM CaCl2, and 5 mM KCl) solution was 
added, and then the sample was filtered with a 200-mesh filter. The filtrate was 
transferred into a 50 mL centrifuge tube and centrifuged at 100 g for 2 min at 4 °C, 
and then the pellet of protoplasts was resuspended with 10 mL of W5 solution 
and centrifuged again at 100 g for 2 min at 4 °C. The pellet of protoplasts was 
resuspended with 5 mL of W5 buffer and kept on ice for 30 min. After removing 
the supernatant, the protoplasts were resuspended in the MMG buffer (4 mM 
MES, 0.4 M mannitol, and 15 mM MgCl2) at 105-2×105 cells/mL. For transient 
transformation of protoplasts, 10 μL plasmid (10 μg) and 100 μL protoplasts 
were gently mixed in a 2 mL centrifuge tube. After adding 110 μL 40% PEG-Ca2+ 
solution (40% PEG, 0.2 M mannitol, and 0.1 M CaCl2), the mixture was kept at 
25 °C for 15 min in dark. Then, 440 μL W5 solution was added and centrifuged 
at 100 g for 2 min. The supernatant was carefully removed and the pellet was 
resuspended with 500 μL W5 solution. Protoplasts were then centrifuged again 
at 100 g for 2 min at 25 °C. Finally, cells were resuspended in 1 mL W5 solution 
and cultured at 25 °C for 15 h in dark.

Dual-Luciferase Transcriptional Activity Assay in Maize Protoplasts. Wild-
type and mutated promoter sequences were cloned into the plant expression 
vector pGreenII0800-LUC. Promoter sequences and primers used are listed in 
the Dataset S4. Luciferase activities were measured using the Dual-Luciferase 
Reporter Assay System (Promega) according to the manufacturer’s instructions.

Transient Gene Expression Analysis in Arabidopsis Seedlings. Transient gene 
expression in Arabidopsis was performed as previously described (52). Arabidopsis 
seeds were surface-sterilized with 75% ethanol for 10 min and sown on 1/4 MS 
agar plate (pH = 6) with 1% sucrose. After stratification at 4 °C for 24 h, the seeds 
were germinated in an artificial climate incubator (16 h light and 8 h dark at 
22 °C). Artificially designed promoter sequences were chemically synthesized at 
a local vendor and cloned into pCAM-eGFP-N1 plasmid between the XmaI and 
NcoI restriction sites. Plasmids were transformed into Agrobacterium tumefaciens 
(GV3101) and stock onto LB agar plates with kanamycin and rifampicin for 2 d 
at 28 °C. A single colony from the plate was inoculated into 2 mL LB medium 
with antibiotics (25 μg/mL kanamycin plus 25 μg/mL rifampicin) and cultured 
at 28 °C for 18 to 24 h, diluted with 10 mL fresh YEB medium (5 g/L beef extract, 
1 g/L yeast extract, 5 g/L peptone, 5 g/L sucrose, 0.5 g/L MgCl2) to OD600 = 0.3 and 
grown until OD600 = 1.5. A. tumefaciens cells were harvested by centrifugation 
at 6,000 g for 5 min, washed with 10 mL washing solution (10 mM MgCl2, and 
100 µM acetosyringone) and resuspended in 1 mL washing solution. Four-day-
old Arabidopsis seedlings were cocultivated with A. tumefaciens for 36 to 40 h in 
the dark in 20 mL cocultivation medium (1/4 MS, 1% sucrose, pH = 6.0, 100 µM 
AS, 0.005% Silwet L-77). Fluorescence imaging was performed using an LSM900 
confocal microscope.

STARR-Seq Assay in Maize Protoplasts. The STARR-Seq vector and experi-
mental procedure was from a previous study (5). The 20 evolved sequences, 35S 
enhancer, and the 13 maize strong endogenous enhancers from a previous study 
(40) (listed in Dataset S4) were synthesized and amplified using the primer pool-F 
and pool-R, and then ligated with the linearized STARR-Seq vector (digested by 
MfeI and StuI) using the In-Fusion HD Cloning Kit (Clontech). The ligated product 
was used to transform homemade competent E. coli cells. Positive E. coli clones 
were harvested from the plate and cultured in a 100 mL flask, followed by plasmid 
isolation. The isolation and transfection of maize protoplasts were performed as 
described in the previous section. Transformed maize protoplasts were divided 
equally into two samples. Total RNA was extracted from one sample using the 
TransZol Up Plus RNA Kit (TransGen Biotech). The recovered mRNA was reverse 
transcribed using TransScript One-Step gDNA Removal and cDNA Synthesis 
SuperMix (TransGen Biotech) with the primer RT, and the cDNA was amplified by 
the primers NGS-F and NGS-R. Total DNA was extracted from the other sample 
by the CTAB method, and amplified by the primers NGS-F and NGS-R. The two 
libraries were sequenced on the Illumina HiSeq X Ten platform. The transcriptional 
strength of each sequence was calculated by counting the number of uniquely 
mapped reads from the cDNA library normalized by the number of uniquely 
mapped reads from the DNA library for this sequence.

Data, Materials, and Software Availability. Code was deposited at https://doi.
org/10.6084/m9.figshare.24417076.v1 (53). Sequences and mRNA abundance D
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data: https://doi.org/10.6084/m9.figshare.24417085.v1 (54). The CNN+stacking 
model with weights: https://doi.org/10.6084/m9.figshare.24417079.v1 (55). The 
transformer model with weights: https://doi.org/10.6084/m9.figshare.24417082.
v1 (56). The importance scores of transcriptional regulatory nucleotides in maize: 
https://doi.org/10.6084/m9.figshare.25467022.v1 (57). Previously published data 
were used for this work (2, 15, 16). All other data are included in the manuscript 
and/or supporting information.
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