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Significance

Drought is a complex and 
variable stress that is difficult to 
quantify and link to underlying 
mechanisms both within and 
across species. Here, we 
developed a predictive model to 
classify drought stress responses 
in sorghum and identify 
important features that are 
responsive to water deficit. Our 
model has high predictive 
accuracy across development, 
genotype, and stress severity, 
and the top features are enriched 
in genes related to classical 
stress responses and have 
functional and evolutionary 
conservation. We applied this 
sorghum-trained model to maize, 
and observed similar predictive 
accuracy of drought responses, 
supporting transfer learning 
across plant species. Our findings 
suggest there are deeply 
conserved drought responses 
across C4 grasses that are 
unrelated to tolerance.
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Drought tolerance is a highly complex trait controlled by numerous interconnected 
pathways with substantial variation within and across plant species. This complexity 
makes it difficult to distill individual genetic loci underlying tolerance, and to identify 
core or conserved drought-responsive pathways. Here, we collected drought physiol-
ogy and gene expression datasets across diverse genotypes of the C4 cereals sorghum 
and maize and searched for signatures defining water-deficit responses. Differential 
gene expression identified few overlapping drought-associated genes across sorghum 
genotypes, but using a predictive modeling approach, we found a shared core drought 
response across development, genotype, and stress severity. Our model had similar 
robustness when applied to datasets in maize, reflecting a conserved drought response 
between sorghum and maize. The top predictors are enriched in functions associated 
with various abiotic stress-responsive pathways as well as core cellular functions. These 
conserved drought response genes were less likely to contain deleterious mutations than 
other gene sets, suggesting that core drought-responsive genes are under evolutionary 
and functional constraints. Our findings support a broad evolutionary conservation of 
drought responses in C4 grasses regardless of innate stress tolerance, which could have 
important implications for developing climate resilient cereals.

predictive modeling | C4 grasses | maize | drought | transfer learning

Drought is responsible for billions of US dollars in losses each year, and the impacts of 
drought are most severe in developing regions of the world where food security is already 
low (1). Water deficit elicits hundreds to thousands of interconnected molecular pathways 
in plants, and drought tolerance represents a complex, emergent phenotype that is chal-
lenging to breed for or separate into major genetic loci (2, 3). Drought is also a difficult 
stress to apply and quantify, and plant responses to physiologically relevant drought events 
in the field are often different from those detected under controlled experiments in growth 
chamber or greenhouse settings (4, 5). These compounding issues represent major chal-
lenges for studying drought stress, but they also present an opportunity to leverage systems 
level and predictive modeling-based approaches to understand complex traits in plants.

C4 grasses dominate natural and agricultural settings, and they have evolved a unique 
set of adaptations that enable an emergent resilience to drought and other abiotic stresses 
(6). Sorghum bicolor (sorghum) is one of the most stress tolerant and highly productive 
C4 cereals, and it is an important agricultural commodity grown globally for grain, sugar, 
and biomass. Sorghum was domesticated in the semi-arid Sudanese savannah of northeast 
Africa around 4,000 BCE (7), and subsequently spread westward across the African steppe 
and throughout the Indian subcontinent and China. The broad geographic and climatic 
regions where sorghum was historically cultivated has led to significant diversity and local 
adaptation among cultivars. While sorghum is generally regarded as a drought tolerant 
crop, there remains considerable variation for abiotic stress tolerance among different 
sorghum accessions.

Drought tolerance is a highly complex trait in sorghum and numerous developmental 
and morphophysiological traits have been correlated with tolerance. Sorghum cultivars are 
often classified as either preflowering or postflowering drought tolerant with tolerance at 
both developmental stages a relative rarity (8). Postflowering drought tolerance is related 
to stay-green traits that prevent premature senescence (9, 10). Preflowering drought is 
characterized by more varied responses, and reactive oxygen species scavenging, cuticular 
wax production, and flowering time regulation are important components of preflowering 
drought tolerance in sorghum (5, 10, 11). Numerous previous studies have examined the 
transcriptomic response of different genotypes to both preflowering and postflowering 
drought tolerance in sorghum (11–13). However, these studies focused on the response of 
two or a few genotypes, limiting their ability to identify conserved and divergent patterns 
of expression across the diversity of cultivated sorghum.D
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The broad genetic diversity of sorghum is captured by the sor-
ghum association panel (SAP), which is composed of 400 tem-
perate breeding lines as well as converted tropical lines that 
collectively represent the bulk of sorghum diversity (14). 
Association studies have identified genomic regions linked with 
drought response in sorghum (15) but unlike expression studies, 
it is challenging to link specific genes to underlying phenotypes. 
Here, we compared gene expression across the SAP during a nat-
ural drought event and leveraged these data to identify conserved 
and variable drought responses across sorghum lines.

We hypothesize that a core and deeply conserved drought 
response operates both within sorghum germplasm and across 
related species, reflecting ancestral adaptations of C4 grasses. 
Prior studies have observed commonalities in differentially 
expressed genes under drought stress across diverse angiosperms, 
but these studies were limited in sampling, species, or tissue 
breadth (16, 17). The progenitors of sorghum and Zea mays 
(maize) diverged 11.9 Mya, and maize and sorghum still share 
many similar morphological, biochemical, and genetic traits (18). 
However, sorghum is more drought tolerant than maize (19), 
creating an ideal comparative system. The drought responses of 
sorghum and maize have been compared using only one or a few 
genotypes (19, 20), but these studies are limited because they 
fail to account for the broad intraspecific variation present in 
both species.

Here, we compared interspecific variation and conservation of 
drought response between maize and sorghum as well as intraspe-
cific variation in both species individually. We generated drought 
and well-watered expression data across 25 diverse sorghum gen-
otypes and 27 diverse maize genotypes. We also leveraged addi-
tional new and public sorghum drought datasets (10–12, 21, 22) 
to develop a predictive model capable of classifying samples as 
drought responsive based on gene expression. We dissected the 

model to identify genes involved in drought response and applied 
our model to maize to elucidate evolutionary conserved patterns 
across both species.

Results

Climate-Relevant Drought Responses across Sorghum Accessions. 
Physiologically relevant drought stresses are difficult to simulate in 
controlled settings, and we sought to capture sorghum responses 
to a natural drought event in an agricultural setting. East Lansing, 
Michigan, experienced a period of below average precipitation 
corresponding to a mild drought event between June and early 
July 2020 (Fig. 1A). We collected physiological and RNA samples 
from 25 diverse sorghum genotypes during this natural stress event 
and 4 d later after a heavy rainfall event where plants recovered. We 
found that the sorghum plants had significantly low relative water 
content during the dry period compared with recovery, suggesting 
the plants were experiencing mild water-deficit stress (Fig. 1B). 
We also found that the sorghum plants had higher instantaneous 
nonphotochemical quenching, as measured by the photosynthesis 
parameter non-photochemical quenching (NPQt), during the dry 
period (Fig.  1C) (23). Nonphotochemical quenching increases 
under drought stress as a mechanism to dissipate excess light 
energy when photosynthesis is carbon limited as a result of stomatal 
closure (24). However, despite the drop in NPQt, we did not detect 
any differences in photosynthetic efficiency (ΦII) or linear electron 
flow, suggesting that the light reactions of photosynthesis were still 
proceeding at a high pace (Fig. 1D). Together, this suggests the 
sorghum plants were experiencing a very mild, and fully recoverable 
drought event.

We collected three replicates of RNA sequencing (RNAseq) 
data for each genotype at the drought and recovery timepoints to 
search for expression patterns corresponding to water-deficit 
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Fig. 1. Physiological response of diverse field grown sorghum genotypes across a natural drought stress event. (A) Cumulative growing season precipitation 
before and during the sampling period compared to the 30-y mean. The two sampling dates are labeled with stars. (B) Box plots of relative water content for 
each of the 25 genotypes on the two sampling dates. (C) Boxplot of NPQt on each sampling date. (D) Scatterplot showing linear electron flow as a function 
of photosynthetically active radiation (PAR). Points are colored by photosystem II efficiency (Phi2) with circles representing the recovery (November 7, 2020) 
sampling date and triangles representing the drought (July 7, 2020) sampling date.D
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responses in sorghum. Dimensionality reduction analysis clearly 
separates the RNAseq samples into two distinct groups of well-
watered and drought along principal component 1 (Fig. 2A). 
Principal component 2 separates the samples of sorghum by gen-
otype, but this pattern is not absolute (SI Appendix, Fig. S1). 
Across all genotypes, we identified 1,761 genes up-regulated under 
water deficit, and 2,317 genes down-regulated. Among up-regu-
lated genes under drought, we found enrichment of gene ontology 
terms related to stress responses, including response to heat as well 
as terms related to protein folding and chaperone activity 
(SI Appendix, Table S1). Genes down-regulated under stress were 
enriched in gene ontology terms related to photosynthesis and 
central metabolism, as expected for mild stress responses.

Despite the large overall changes in gene expression and typical 
stress-related gene ontology profile, we found surprisingly little 
intraspecific overlap of gene expression under water-deficit stress 
in sorghum (Fig. 2 B and C). Only a single sorghum gene was 
up-regulated, and no genes down-regulated in all 25 genotypes on 
the drought sampling date compared with recovery. We defined a 
set of 269 “shared” differentially expressed genes based on common 
differential expression between the drought and recovery time-
points in at least half of the sorghum genotypes. Only 133 genes, 

representing 8% of all up-regulated genes, showed shared upreg-
ulation. Similarly, only 136 genes or 6% of down-regulated genes 
were shared in half or more genotypes. On a per genotype basis, a 
greater percentage of differential expressed genes were shared, with 
between 18% and 51% of genes differentially expressed conserved 
across genotypes. The mean percentage of up-regulated genes in 
each genotype that were shared across at least half the genotypes 
(36%) was significantly higher (t test P = 0.01) than the percentage 
of shared down-regulated genes (28%). To further explore the dif-
ference between shared and variably expressed genes, we defined 
a set of 1,583 “unique genes” which were differentially expressed 
in only a single genotype. While the absolute number of unique 
genes is higher than the shared genes overall, in any given genotype, 
they represent a lower percentage of the up- and down-regulated 
genes. We found that the log2 fold-change for shared up-regulated 
genes was significantly higher compared with unique up-regulated 
genes (Fig. 2D; t test P = 1.48e−15). We compared gene ontology 
enrichment between the set of shared up-regulated and unique 
up-regulated genes to ascertain possible differences in function 
between the two sets. Gene ontology enrichment of the shared 
up-regulated genes mirrored that of all up-regulated genes, with 
terms related to response to heat, protein folding, and reactive 
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Fig. 2. Unique expression signatures of drought stress across sorghum genotypes. (A) Principal component analysis of log2 transformed RNAseq data for the 
sorghum field drought experiment. Individual samples are plotted and colored by day. Samples are colored by genotype in SI Appendix, Fig. S1. (B) Histogram 
showing the number of shared up-regulated expressed genes across the 25 sorghum accessions. (C) Histogram showing the number of shared down-regulated 
expressed genes across the 25 sorghum accessions. (D) Violin plots of log2 fold change of expression in the shared differentially expressed genes compared 
with the genes uniquely differentially expressed in a single genotype.D
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oxygen species scavenging enriched. Conversely, gene ontology 
terms enriched among unique up-regulated genes were less obvi-
ously related to stress response with terms such as translation, 
peptide metabolic process, and cellular amide metabolic process 
enriched.

Predictive Modeling of Drought-Responsive Genes in Sorghum. 
Our differential expression analysis was limited by either the 
relatively mild nature of the natural drought event and/or the low 
number of replicates per genotype (three), potentially causing us to 
miss shared drought-responsive genes due to insufficient statistical 
power or a muted drought response due to the mild nature of the 
stress treatment. We used a predictive modeling approach to more 
robustly identify any shared water-deficit stress responses across 
sorghum genotypes in our experiment. Our approach involved 
training a random forest model to classify samples as “drought” or 
“control” based on normalized gene expression values alone. We 
hypothesized that the features with the most predictive power in 
the model would represent genes with central and conserved roles 
in drought responses. We first applied this approach to the sorghum 
experiment described above. Using a training set of expression from 
75% of sorghum genotypes, our model had near perfect prediction 
accuracy on the remaining test set across all folds in a fivefold cross 
validation scheme. However, the model relied on a small number 
of features to make those predictions. The average depth of the 
individual trees within the random forest was only 1.9, indicating 
that each decision tree used on average less than two genes out 
of 34,117 possible genes to make a prediction. To improve the 
utility of our model, we used k-means clustering to reduce the total 
number of features. We created seven clusters based on the scaled 
expression data and used the first principal component of gene 
expression in each cluster as our input feature. Our model was able 
to classify samples from genotypes withheld from the training data 
correctly 95% of the time (SI Appendix, Fig. S2). The individual 
trees within the cluster-based model used on average 4.8 out of 
seven possible k-means-based features. To identify clusters with 
the most predictive power, we calculated feature importance using 
the mean decrease in impurity (Gini score) metric implemented 
in the scikit-learn package. We found that clusters with the 
most importance in the classification model also had the highest 
percentage of up-regulated genes (SI Appendix, Fig. S3).

Our model was developed using data from a relatively mild 
drought event, and we expanded the model using publicly available 
sorghum drought datasets with varying designs, genotypes, and 
drought severity (SI Appendix, Table S2). The public datasets 
included RNAseq of vegetative tissues from both field and chamber 
grown sorghum across multiple developmental stages. We also 
generated an additional dataset using 54 chamber grown Btx623 
sorghum plants with drought applied at three different develop-
mental stages. In total, we analyzed seven additional datasets, col-
lectively representing 35 genotypes, with 206 drought-stressed 
samples and 254 well-watered or recovery samples. We reprocessed 
all of the expression data using a common analytical framework, 
and compared these experiments using dimensionality reduction 
approaches. The expression samples cluster separately by experi-
ment rather than stress vs control along the first two principal 
components, suggesting significant heterogeneity and sampling 
artifacts (Fig. 3A). To remove batch effects, we applied the combat 
algorithm to adjust the input data (SI Appendix, Fig. S4). We then 
split the data into training and testing sets using a “leave one exper-
iment out” approach where one dataset was withheld for testing 
the model and the rest were used for training. The accuracy of our 
model across all test datasets was 86% (Fig. 3B). The precision and 
recall of the model were both 0.84, where 1 is a perfect classifier 

and 0.5 is a random classifier (Fig. 3 C and D). The model per-
formed well across all datasets individually, with prediction accu-
racy ranging from 64% to 100%; however, excluding the best 
performing (which only had two samples) and worst performing 
datasets, the range was 82 to 91% (Fig. 3B). The top features 
(genes) in the sorghum predictive model include 39 of the con-
served up-regulated genes from field-stressed plants. The ability of 
our model to classify samples accurately on an unobserved dataset 
implies the existence of a conserved pattern of gene expression in 
response to drought across diverse sorghum lines.

Developmental stage influences the relative drought tolerance 
of sorghum lines. To assess whether our model could accurately 
classify drought samples regardless of developmental stage, we 
trained a version of our model using 203 sorghum samples from 
the vegetative stage and used the remaining 34 samples from flow-
ering or postflowering stages to test the model. Our model pre-
dicted with 97% accuracy and an area under the ROC curve (auc) 
score of 0.99 (SI Appendix, Fig. S5), suggesting that a conserved 
drought response is present across developmental stages, despite 
distinct physiological signatures and molecular mechanisms 
underlying preflowering and postflowering drought responses in 
sorghum.

Cross-Species Predictive Modeling Identifies Conserved Core 
Stress Response. Our analyses to this point identified a shared 
drought response across diverse sorghum lines. To probe the 
evolutionary conservation of this response, we compared our 
findings within sorghum to similar datasets in maize. We collected a 
water-deficit stress dataset across a set of 27 diverse maize genotypes 
in a greenhouse environment. Briefly, we withheld water from 
potted maize plants at the ~V5 leaf stage for 1 to 3 d. On each day, 
we sampled a stressed group and a corresponding control group, 
which received water daily. We found that stomatal conductance 
was significantly lower in the stressed groups as compared with the 
controls (P = 1.22e−105) as well as across the different experimental 
timepoints (P = 1.04e−31) (SI Appendix, Fig. S6). As expected, 
the difference between days was dependent on treatment with a 
significant interaction between treatment and day (P = 1.43e−38), 
demonstrating that the stressed group had a significant drop in 
stomatal conductance compared with the controls. We also found 
significant differences in stomatal conductance between genotypes 
(P = 0.0017) suggesting differing physiological responses across 
maize genotypes.

We observed significant changes in gene expression between 
the drought and control timepoints in maize, with the number of 
differentially expressed genes increasing in the more severe time-
point. The maize dataset has only one sample of each genotype at 
each timepoint, thus instead of comparing differential expression 
for each genotype, we used log2 fold-change to assess the variation 
of expression response under water-deficit across genotypes. 
Similar to the sorghum dataset, we saw limited shared response 
between the genotypes. Only three genes had a log2 fold-change 
greater than 1.5 between the first, milder, stress timepoint and the 
corresponding control in all 27 genotypes. While 272 genes, rep-
resenting 7% of all up-regulated genes showed a greater than 
1.5 fold-change in at least half the genotypes. During the severe 
stress timepoint, we saw more overlap between genotypes with 
125 genes showing a greater than 1.5 fold-change across all gen-
otypes and 1,845 up-regulated in at least half of the genotypes.

We used our modeling approach to test whether sorghum and 
maize have shared, core drought response pathways. We con-
verted maize genes to their corresponding sorghum orthologs 
using a synteny-based approach to enable comparisons across 
species. Although both sorghum and maize share the same D
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chromosome number, maize underwent a more recent whole 
genome duplication and many maize genes display a 2:1 syntenic 
pattern with sorghum (18). For maize genes with this 2:1 synteny 
pattern, we averaged syntelog expression and created a converted 
matrix of maize expression with sorghum gene identifiers. We 
then retrained our sorghum model using all seven sorghum data-
sets with only sorghum genes having a syntenic counterpart in 
maize (Fig. 4A). We applied the model to the maize data and 
found that it predicted with 85% accuracy and an auc score of 
0.98. We also created a model trained with the maize data, and 
tested it on the sorghum dataset. This maize model predicted 
sorghum samples with 81% accuracy and an auc score of 0.94 
across all samples with performances of 64 to 100% across the 
individual experiments (Fig. 4B).

To further test the hypothesis that maize and sorghum share a 
core stress response, we compared the overlap between differentially 
expressed genes in the maize dataset, our sorghum field experiment, 
and the top-predictors from our sorghum-trained model. We found 
significant overlap between genes up-regulated in maize and sorghum 
(Fisher’s exact test P = 3.4e−47), as well as genes down-regulated in 
the two species (Fisher’s exact P = 6.8e−158; Fig. 4 C and D). We 
also found significant overlap between the top predictors from the 
sorghum-trained model and genes up-regulated in maize (Fisher’s 
exact P = 1.9e−47) as well as sorghum (Fisher’s exact P = 3.5e−111). 
Interestingly, we did not identify significant overlap between 
down-regulated genes and the top predictors in our model (Fig. 4D).

We hypothesized that expression of the top predictors from our 
sorghum-trained model would be associated with physiological 
markers of drought stress. To test this, we calculated the first prin-
cipal component of log transformed gene expression (PC1) across 
the top predictors as a summary value of gene expression 
(SI Appendix, Fig. S7). We then correlated the PC1 values with 
physiological variables. We found that PC1 was significantly neg-
atively correlated with relative water content (Spearman r = −0.53), 
suggesting that the top predictors are strongly associated with 
signatures of drought physiology.

We identified a set of 284 genes that were top predictors in the 
sorghum and maize-trained models, and also differentially 
expressed in both datasets. The majority of these genes showed 
increased expression during drought in our sorghum dataset 
(Fig. 5A). Using gene ontology enrichment analysis, we found 
significant enrichment for well-characterized abiotic and biotic 
stress-responsive pathways as well as genes related to protein folding 
(Fig. 5C). We found that these conserved drought-responsive genes 
were also significantly more likely to have shared differential expres-
sion (>50% of genotypes) as opposed to differentially expressed in 
only one sorghum genotype (Fisher’s exact P = 7.37e−29). Previous 
researchers have identified sets of shared differentially expressed 
genes related to drought responses in other species (17). To test for 
overlap between our conserved drought genes in maize and sor-
ghum and across broader species, we used conserved orthogroups 
to link gene identities between studies. We identified orthologs for 

A B

C D

Fig. 3. Predictive modeling of drought stress in sorghum using gene expression data. (A) Principal component analysis of log2 transformed RNAseq data for the 
seven sorghum drought expression datasets used for predictive modeling. A principal component analysis of the ComBat-filtered expression data is available 
in SI Appendix, Fig. S3. (B) Predictive accuracy of the random forest model for classifying drought-stressed sorghum samples across each individual experiment. 
The mean predictive accuracy is shown by a black line compared with a random background (in orange). (C) Confusion matrix of the drought predictive model. 
(D) Receiver operating characteristic curve showing the performance of the drought classification model across all classification thresholds.
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282 of the 284 conserved drought-responsive genes reported in 
Shaar-Moshe et al. and found 39 had shared drought responsive-
ness in maize and sorghum. This represents significant enrichment 
(Fisher’s exact test P = 2.49e−20); however, a substantial portion 
of the drought response genes between maize and sorghum are not 
shared with more distantly related species.

Genes with the highest predictive power in the sorghum and 
maize models are overwhelmingly involved in response to abiotic 
stresses (SI Appendix, Table S3). This include orthologs of the 
abscisic acid-mediated transcription factors drought-induced 
protein 19 (Di19-3; Sobic.003G443000) (25) and abscisic 
acid-responsive element-binding factor 2 (AREB1; 
Sobic.004G309600) (26), which play central roles in the regu-
lation of drought and high-salinity stress responses. Top predic-
tors also include aquaporin orthologs to plasma membrane 
intrinsic proteins PIP 1 and 4 (Sobic.004G288700, 
Sobic.004G238100), which has been linked to various osmotic 
stresses in Arabidopsis (27). The most abundant group of top 
predictors are reactive oxygen species scavengers such as 
L-ascorbate peroxidase (Sobic.001G410200, Sobic.006G084400, 
Sobic.006G204000), polyamine oxidase (Sobic.001G472000), 
thioredoxins (Sobic.​ 001G173500 Sobic.001G386200, 
Sobic.002G421600, Sobic.​ 008G117600), ferredoxin 3 
(Sobic.001G022900), and oxidoreductase (Sobic.006G140700), 
as well as various heat shock proteins and a tandem array of 
orthologs to heat shock protein 22 (HSP22; Sobic.003G081900, 

Sobic.003G082000, Sobic.003G082100, Sobic.003G082200, 
Sobic.003G082300, Sobic.003G082500). HSP22s play essential 
roles in epigenetic memory to heat stress in Arabidopsis (28) 
and may function in the regulation of osmotic stress. Late embry-
ogenesis-abundant proteins (LEAs) protect cellular macromol-
ecules during water deficit (29), and orthologs of LEA2 
(Sobic.001G017100) and dehydrins (Sobic.009G116700) are 
also included in this list of top predictors. These patterns suggest 
top predictors are involved in deeply conserved and central 
responses to water deficit.

Evolutionary Constraint of Conserved Drought-Responsive 
Genes. Through our predictive modeling approach, we have 
identified a core set of genes that show a conserved pattern of 
gene expression during water deficit in maize and sorghum. We 
expect that the shared expression signatures are an indication of 
evolutionary conservation. To test this, we compared deleterious 
load between top predictor genes and a background set of genes. 
To estimate deleterious load, we used average Sorting Intolerant 
from Tolerant (SIFT) scores as calculated in Lozano et al. (30). 
SIFT scores are computational predictions of the effect of 
individual mutations. A SIFT score below 0.05 represents a 
mutation that is predicted to be deleterious, and when averaged 
across all mutations in a gene, the score represents a deleterious 
index. We compared the proportion of genes with average SIFT 
scores below 0.05 between 2,000 bootstrapped samples of the 

A B

C D

Fig. 4. Cross-species predictive modeling of drought stress. (A) Predictive accuracy for classifying drought stress in maize using all of the sorghum samples 
for training (in gray) and each experiment individually. (B) Predictive accuracy of the maize-trained model for classifying drought stress across the sorghum 
experiments. (C) Alluvial plot showing orthologs between maize and sorghum that are conserved top predictors (blue). (D) P-value from Fisher’s exact test 
comparing overlap between syntenic orthologs in each differentially expressed gene set as well as the top predictors from the sorghum-trained model.
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top predictor genes with a background set. Since genes with high 
expression are more likely to be evolutionary constrained, we chose 
the set of all genes with average expression values across all our 
sorghum field samples greater than the 73rd percentile, which 
represents the mean percentile rank of the top predictor genes. The 
top predictor genes had a significantly lower proportion of genes 
with average SIFT scores < 0.05 than both the highly expressed 
background set and all genes (Fig. 5B). This suggests that the core 
set of drought-related genes are more evolutionarily constrained 
than other highly expressed genes.

Discussion

Drought tolerance is variable across diverse sorghum lines, yet 
some elements of drought response are conserved even across spe-
cies. Previous work has mostly focused on either differences 
between individual sorghum genotypes or comparisons of sor-
ghum with other species such as maize. Integrating our under-
standing of intraspecific and interspecific variations in drought 
response is an important step in unraveling the evolutionary his-
tory of drought tolerance in plants. In this study, we used a pre-
dictive modeling approach combined with differential expression 
analysis across diverse sorghum genotypes to identify shared and 
unique drought responses.

We identified a core set of genes with a conserved expression 
pattern across the majority of sorghum genotypes. We then applied 
our model to a parallel maize dataset and found that the conserved 
response was largely shared with maize. In evolutionary terms, the 
ancestors of maize and sorghum diverged relatively recently (18). 
The two species show conserved response to some stresses, and 
previous studies have shown conserved resistance mechanisms to 

particular pathogens between maize and sorghum (31). However, 
sorghum and maize differ markedly in their resilience to abiotic 
stresses, particularly drought and heat (19, 32, 33). Interestingly, 
even for cold stress, an abiotic stress where both species are sus-
ceptible, maize and sorghum have surprisingly different gene reg-
ulatory responses (34). Therefore, our finding that a core response 
to drought is conserved between maize and sorghum is initially 
surprising. A metaanalysis of microarray data identified a set of 
shared differentially expressed genes across multiple angiosperm 
species during progressive drought stress, although this work did 
not include sorghum or maize (17). Our findings expand on this 
result, showing a similar pattern of conservation in sorghum and 
maize during drought. Core aspects of angiosperm drought 
response evolved during the adaptation of early plants to a terres-
trial environment (35), and some form of water deficit is contin-
ually faced by virtually all plant lineages. Conversely, cold tolerance 
likely evolved repeatedly across angiosperm lineages and relatively 
recently in grasses (36). The apparent divergent responses to cold 
in sorghum and maize and seemingly more shared drought 
response are perhaps an artifact of the evolution of these two traits 
across different timescales.

Prior work used differential gene expression to identify shared 
drought response patterns across species, and this approach has 
identified hundreds of conserved drought-responsive genes (17). 
Much of this work was limited to microarray data or small sample 
sizes that can limit the effectiveness of differential gene expression 
analysis (37). Combining samples from disparate datasets can 
increase the sample size; however, this is impractical due to differ-
ences in methods between experiments. In particular, drought 
experiments often represent a broad range of soil water contents, 
developmental stages, and genotypes. Hundreds of interconnected 
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Fig. 5. Evolutionary conservation and functional enrichment of top predictors involved in drought responses. (A) Heatmap showing scaled expression values 
in the sorghum field experiment, for the 284 syntenic orthologs that are differentially expressed in both the maize and sorghum experiments as well as among 
the top-predictors in the sorghum- and maize-trained models. (B) Bootstrapped CI for the proportion of genes with a significant average SIFT score among the 
sorghum-trained model top predictors compared with the proportion of top expressed genes (>74 percentile of expression) with significant average SIFT scores. 
(C) Multidimensional scaling plot showing clusters of enriched gene ontology terms in the set of genes described above. The size of each circle is proportional 
to the number of genes annotated with each term, and the circles are colored by the log10 of the adjusted P-value.
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pathways underlie a typical drought stress response, and these 
expression dynamics are not easily captured by simple pairwise 
differential expression.

Supervised classification models offer an alternative approach 
to traditional differential gene expression analysis. We used a ran-
dom forest classifier to label samples as drought or control based 
on gene expression values. The random forest model was able to 
accept training data from seven diverse datasets, which varied in 
sample size, growth environment, developmental stage, and 
method and level of water-stress imposed. Our model performed 
well across the majority of these datasets indicating a broadly 
shared core drought response across disparate sorghum drought 
treatments. Developmental stage has a major impact on drought 
tolerance in sorghum, and separate preflowering or postflowering 
drought tolerant accessions have been identified, with little overlap 
between groups (5, 9). Preflowering and postflowering drought 
tolerance strategies are characterized by distinct physiological and 
molecular mechanisms. Postflowering tolerance is associated with 
the stay green phenotype where tolerant lines retain green leaf area 
from anthesis through grain filling. The physiological basis of 
preflowering drought tolerance is more complex, and likely relates 
to water use efficiency, osmotic adjustment, and plant architecture 
traits that ultimately give rise to higher yields (38). Despite these 
differences, when trained on only the vegetative stage samples, 
our model still classified flowering and postflowering drought 
samples accurately. This implies a shared core stress response across 
developmental stages.

Despite broad conservation of a core set of drought-responsive 
genes across sorghum datasets and developmental stages, the indi-
vidual expression response to drought was variable across sorghum 
genotypes. The majority of differentially expressed genes identified 
in our sorghum field experiment were private to one genotype. 
However, within a single genotype, a higher percentage of up-
regulated genes are shared (36%) than genes which are unique to 
that genotype (8%). The private genes are potentially responsible 
for between genotype differences in drought response. Alternatively, 
they may represent noise or gene expression changes unrelated to 
drought. Overall, the log2 fold-change of shared genes was signif-
icantly higher than unique genes, suggesting that unique genes 
are more likely to represent noise rather than true differential 
expression. Furthermore, gene ontology terms enriched among 
unique genes were not clearly stress related while the shared genes 
were enriched in terms related to known stress response pathways. 
While some unique differentially expressed genes are undoubtedly 
important in drought response, we hypothesize that the core 
drought response is conserved across genotypes.

Our finding of a conserved drought response across diverse sor-
ghum genotypes and developmental stages coupled with the 
cross-species predictive accuracy of the sorghum- and maize-trained 
models suggests an evolutionarily conserved response. A prior 
metaanalysis found that differentially expressed orthologs which were 
shared between wheat and rice or barley and rice had higher sequence 
similarity than orthologs, which were differentially expressed in only 
one species (17). Not all sequence changes are functionally mean-
ingful. Top predictors in our sorghum-trained model had a signifi-
cantly lower proportion of genes with average SIFT scores below 
0.05 [i.e., predictive of deleterious mutations (39)] than either a 
random set of background genes or other highly expressed genes. 
This suggests that conserved drought-responsive genes across sor-
ghum and maize are less likely to contain deleterious mutations.

Several metabolic processes have repeatedly been shown to be 
involved in drought response across divergent plant species. Gene 
ontology terms related to response to abiotic stimulus and car-
bohydrate metabolism were identified as enriched among 

conserved differentially expressed genes in Shaar-Moshe et al. 
Other studies proposed that pathways involved in accumulation 
of osmoprotectants, reactive oxygen species scavenging, regula-
tion of nitrogen metabolism, ammonia detoxification, and acti-
vation of the Gamma-aminobutyric acid (GABA) shunt in the 
tricarboxylic acid (TCA) cycle were conserved across multiple 
species in response to drought (16). The core sorghum- and 
maize-responsive genes we identified have overlap between 
orthogroups identified in Shaar-Moshe et al. and the general gene 
ontology term “response to abiotic stimulus.” We also found evi-
dence of reactive oxygen species scavenging enzymes as well as 
folding and refolding of proteins based on the gene ontology term 
enrichment. Cellular response to endoplasmic reticulum stress 
caused by accumulation of unfolded and misfolded proteins, 
known as the unfolded protein response (UPR) is a well-studied 
process in response to environmental stress (40). Much of the 
UPR is conserved across not just plants but all eukaryotes and 
thus it is unsurprising that we see shared activation under drought 
stress here (41).

Conclusion

Prior studies have identified shared differentially expressed genes 
under drought stress across multiple species. We extend these 
results and show a similar shared core response across maize and 
sorghum using a predictive modeling approach. Our approach has 
the advantage of enabling integration of multiple diverse datasets 
despite differences in sample size and approach between experi-
ments. We show that the core response is largely shared among 
diverse sorghum and maize genotypes and across developmental 
stages despite overall variable drought response between species. 
Taken together, our results suggest a deeply conserved core drought 
response exists in plants, and resilience or susceptibility is likely 
driven by modifications of these central pathways. Practically, the 
model we created can be used to classify the extent and degree of 
drought stress experienced by individual plants, and hopefully with 
additional datasets, could predict signatures that are associated 
with resilience.

Methods

Sorghum Experimental Design and Sampling. We grew sorghum genotypes 
from the sorghum association panel for this experiment at the Michigan State 
University Agronomy farm using a randomized complete block design. The soil 
type was a mix of Conover loam over approximately two-thirds of the field area, 
and the more freely draining Sisson fine sandy loam, in the remaining area (US 
Department of Agriculture, Natural Resources Conservation Service, 2019). We 
planted seeds in two row plots and allowed the plants to grow under ambient 
environmental conditions. East Lansing, Michigan, experienced a drier than nor-
mal period during the early summer of 2020. The nearby Hancock Turf Research 
Center weather station recorded only 50.5 mm of precipitation between June 1 
and our first sampling date of July 7 compared with the 5-y average of 106.68 mm 
at that site. The end of June and beginning of July was particularly dry with no 
precipitation falling between June 27 and the first sampling date of July 7. In 
total, 42.6 mm of rainfall fell before the second sampling timepoint on July 11.

We sampled each plot at two separate timepoints, the first on July 7, 2020, 
was during mild water-deficit stress, and the second on July 11 was after the 
plants had recovered following precipitation. On both days, we took all samples 
between 10:00 AM and 12:00 PM local time and sky conditions were similar. 
We collected leaf samples for RNA sequencing into liquid nitrogen from the mid-
section of the second top-most fully expanded leaf from three plants per plot 
and combined the samples into a single tube. Leaf tissue from the same leaves 
were collected into airtight tubes and stored in a cooler for relative water content 
analysis. We also collected photosynthetic efficiency and other leaf physiology 
data using the MultiSpeQ fluorometer from the top-most fully expanded leaf for 
two plants per plot.D
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We measured the fresh weight (FW) of leaf samples using an analytical bal-
ance immediately following field sample collection. We processed three leaf 
samples from each plot together to achieve a single relative water content value 
per plot. After measuring fresh weight, we floated the leaf samples in Millipore 
filtered deionized water kept in the dark overnight at 4 °C. The following day, we 
dried the surface of the leaf samples and measured the turgid weight (TW) and 
placed the samples in paper envelopes to dry at 60 °C. After drying overnight, 
we measured the sample dry weight (DW) and calculated relative water content 
using the formula:

(

FW − DW

TW − DW

)

∗ 100% .

Maize Experimental Conditions and Sampling. For the maize drought 
experiment, we grew the 26 founders of the nested association mapping pop-
ulation, as well as the inbred maize line Mo17, in 4″  diameter by 4″  deep 
nursery pots for three weeks during the month of June 2016 in the Gutterman 
greenhouse located in Ithaca, NY (42.4482 N, 76.4612 W) (42). Supplemental 
lighting in the greenhouse provided a minimum of 300 µmol M−2 S−1 of 
PAR. During strong sunlight, photosynthetically active radiation (PAR) typically 
approached 1,000 µmol M−2 S−1. The temperature in the greenhouse was held 
at approximately 28 °C during the day and 20 °C at night. We hand-watered 
plants twice daily except during drought treatments. We separated the plants 
into three blocks in the greenhouse with each block consisting of one complete 
set of genotypes for the control and drought treatments. After 3 wk of growth, at 
approximately fifth leaf stage, we withheld water from the drought treatment. 
We measured stomatal conductance on each day of the experiment beginning 
on day 0 (both the control and drought treatments were well watered) and end-
ing on day 3 (3 d after cessation of water for the drought treatment). A Decagon 
porometer (model SC-1), calibrated each day of the experiment, was used to 
collect all stomatal conductance readings from the uppermost fully expanded 
leaf. All stomatal conductance measurements were collected between 10:00 
AM and 2:00 PM local time to minimize the impact of daily physiological cycles 
on the readings. Pots within the drought treatment were weighed each day of 
the experiment as a proxy measure for soil moisture. On days 1 and 3 of the 
experiment, we collected leaf tissue for RNA sequencing in liquid nitrogen. 
We selected the second top most fully expanded leaf for tissue collection to 
avoid competition with the leaves selected from physiological measurement. 
We sampled tissue by folding the leaf from the tip to the base and excising an 
∼5-cm section spanning the midpoint of the leaf and extending inward to, but 
not including the midrib. On day 3, samples were collected from the other half 
of the second topmost fully expanded leaf when possible. However, in cases 
where the prior sampling had damaged the leaf, the topmost fully expanded 
leaf was used as a replacement.

RNAseq Profiling. For both the sorghum and maize experiments, we excised a 
leaf section from the midpoint of the second top-most fully expanded leaf from 
three plants per plot (sorghum experiment) or pooled samples from three plants 
(maize experiment) and froze them in liquid nitrogen. We lysed frozen leaves 
using a bead tissue homogenizer. We then thawed the ground tissue in TRIzol 
reagent and extracted RNA using a Direct-zol 96 kit according to the manufactur-
er's instructions (Zymo Research, Irvine, CA). Lexogen quant-seq libraries for each 
sample were prepared and sequenced by the Cornell Institute of Biotechnology 
for the maize and sorghum datasets.

Previously published RNAseq data for drought stress in sorghum were col-
lected from refs. 10–12, 21, and 22 and downloaded from the National Center 
for Biotechnology Information (NCBI) sequence read archive and processed as 

described below. Full details of the published RNAseq data can be found in 
SI Appendix, Table S2.

RNA Sequence Processing. We trimmed sequence adapters and quality 
checked the raw FASTQ files using the program fastp (v0.23.2) (43). We then 
pseudoaligned our cleaned sequencing reads to the Btx623 sorghum or B73 
V5 maize reference genomes using salmon (v1.6.) (44–46). We then converted 
transcript level counts to gene level using the R package TXimport (v 1.22.0) (47). 
We used DESeq2 (v1.36.0) to calculate pairwise differential expression between 
drought and well-watered conditions for each genotype (48).

RNAseq Data Normalization and Batch Effect Removal. For our model built 
across sorghum datasets, we removed batch effects using the combat algorithm 
implemented in the python package pyComBat (v0.3.2) (49). For all models, 
we split the data into training and testing sets using approaches outlined in 
SI Appendix, Table S4. After splitting the data into training and test sets, we scaled 
the data using the StandardScalar function from the scikit-learn python package 
(v1.1.0) (50).

Random Forest Model Construction and Feature Importance. We 
constructed random forest models with the RandomForestClassifier func-
tion from scikit-learn (v1.1.0) (50). To select hyper-parameters, we used the 
RandomizedGridSearchCV function with 100 iterations using threefold cross 
validation to search the parameter space (SI Appendix, Table S5).

We calculated feature importance using mean decrease in impurity (Gini score) 
as implemented in the scikit-learn package (v1.1.0). We then ranked all genes 
by their importance score. To identify a set number of “top predictors” we used 
a heuristic approach whereby we selected the n top features and compared the 
number that overlapped with differentially expressed genes with the number of 
overlaps in a random set of n genes. For each set of size n, we calculated a z-score 
(# of n top predictors that are also differentially expressed–mean (# of n randomly 
selected genes that are differentially expressed)/SD of random genes. We then 
selected 675 top predictor genes, as that maximized the z-score.

Data, Materials, and Software Availability. RNAseq data generated in this 
project are available on the NCBI sequence read archive for maize and sorghum 
under BioProject PRJNA906711. All other data are included in the manuscript 
and/or SI Appendix. Previously published RNAseq data for drought stress in sor-
ghum was collected from refs. 10–12, 21, and 22 and downloaded from the 
NCBI sequence read archive and processed as described below. Full details of 
the published RNAseq data can be found in SI Appendix, Table S2.
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