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Abstract:  

Characterize transcription factors (TF) binding to cis-regulatory elements is key to understand the 

effect of genetic variability on phenotypic differences. Here, we used 104 TF ChIP-seq to annotate 

the regulatory landscape of the maize leaf. The ~2 millions of identified TF binding sites co-

localized with open chromatin, are evolutionarily conserved, and show enrichment for GWAS-hits 20 

and cis-expression QTLs. The resulted TF-target regulatory network covers half of the annotated 

genes and shows characteristics of real-word networks such as scale-free topology and modularity 

(structural and functional). Machine-learning analyses reveal that sequence preferences are alike 

within TF families, and that co-localization is key for binding specificity. Our comprehensive 

approach provides a starting point to decipher the gene regulatory architecture in plants. 25 

 

One Sentence Summary: Integration of 104 ChIP-seq experiments highlights TF binding 

redundancy and modularity as key properties of the maize regulatory network. 

 

All rights reserved. No reuse allowed without permission. 
perpetuity.preprint (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this. http://dx.doi.org/10.1101/2020.01.07.898056doi: bioRxiv preprint first posted online Jan. 8, 2020; 

http://dx.doi.org/10.1101/2020.01.07.898056


 

2 
 

Main Text: 

Genome non-coding regions are major contributors to observable phenotypic differences and 

adaptation, between and within species (1), likely by regulating gene expression. However, 

assessing their true functions are an ongoing challenge. For example, 70% of maize GWAS hits 

are located in the non-coding regions without functional annotation (2). Recently, it was shown 5 

that sequence variation in the open chromatin within non-coding regions could explain up to ~40% 

of the phenotypic variation of key agronomic traits (3). Several large-scale projects (e.g., 

ENCODE and modENCODE) have been launched, aiming to systematically characterize all 

functional elements in the genome (4); but similar efforts are seldom feasible for individual 

laboratories, and have yet to be fully explored outside metazoan (5). 10 

 

Maize is an important crop plant and model for biology research. Its leaves are among the most 

photosynthetically efficient of all plants, yet the information flow modulated by transcription 

factors (TFs) that allows this design is largely unknown. In order to characterize its regulatory 

architecture, we developed a modified ChIP-seq assay that eliminates the need for specific 15 

antibodies and reduces the amount of material required for library preparation, two major 

limitations for quality and scalable assays (6). We successfully profiled the binding for 104 TFs 

expressed in the maize leaves (Fig. 1 and table S1). We applied the ENCODE uniform pipeline for 

quality-control and processing of the ChIP-seq data (6) (fig. S1), and identified a total of 2,147,346 

reproducible peaks, that cluster in 144,890 non-overlapping TF binding loci (~2% of the genome, 20 

fig. S2, table S2). In addition, we measured chromatin accessibility in the same tissue using ATAC-

seq (7). In total, we identified 38,713 biologically reproducible open chromatin regions (table S3).  

 

From the analysis of large-scale TF ChIP-seq of ENCODE and modENCODE, we expect plant 

TF peaks would also frequently locate within open chromatin regions (4, 8). We found that the 25 

maize TF binding loci and open chromatin regions show similar genome-wide distributions, 

frequently proximal to gene bodies (+/- 2.5kb), with preferences for the 5’ end (Fig. 1B). The 

distance between TF binding to genes after excluding regions that overlap with gene bodies is 

bimodal (Fig. 1C). Despite the larger space available for distal regulation (grey curve, Fig. 1C), 

we observed that regions between 10-100kb constitute ~15% of the TF binding loci, and ~17% of 30 

the open chromatin regions. Layering ATAC-seq and ChIP-seq data show that TF binding loci and 
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open chromatins overlap (fig. S3, P-value < 10-5). On average, ~74% of the peaks for a given TF 

(IQR25-75 64%-87%) intersect with open chromatin regions (fig. S4) confirming the relevance of 

the identified TF binding sites within the chromatin context. Collectively, 98% of the open 

chromatin regions overlap with TF peaks (Fig. 1D) suggesting a large number of possible TF 

combinations that co-regulate transcription. 5 

 

TF binding sites are key determinants of transcriptional regulation, and if purifying selection is 

effective in these regions, they should exhibit low sequence diversity. We examined the 

conservation of the TF binding sites by assessing the overall nucleotide diversity represented in 

the maize HapMap (9) while controlling for overall SNP density in function to the distance of TF’s 10 

peak summit (Fig. 2A). The result confirmed that sequence variation is, in fact, reduced. 

 

While most TFs binding is constrained, TF and their binding sites are key to local adaptation or 

domestication (e.g., ZmTB1 a known TF important for maize domestication) (12). Hence, we 

predict that TF binding loci will be enriched for common SNP variations controlling gene 15 

expression and downstream traits. This was first tested in a panel of 282 inbred breeding lines for 

their effect on mRNA expression using common and likely adaptive variants (13). We found 

twofold enrichment of TF binding loci (95% credible interval 2.26-2.46), similar to the enrichment 

around 5'UTRs (95% credible interval 1.80-2.11) and 3'UTRs (95% credible interval 2.37-2.73) 

(Fig. 2B). Distal and proximal TF binding loci are both enriched (fig. S5). The enrichment pattern 20 

is ubiquitous across the 104 TFs that we examined (fig S6 and table S4). Overall, these are strong 

and consistent supports for common variation in mRNA expression being controlled by TF binding 

site variation. 

 

Next, we tested the overlap with functional variations associated to traits others than gene 25 

expression. To this end, we calculated the enrichment in GWAS hits for seven traits related to 

metabolites (14), leaf architecture (15), and photoperiodicity (16) measured in the US NAM 

population. Overall, TF binding loci are enriched for four of the traits (Fig. 2C). Across TFs, 

simpler traits, such as metabolites, show few TFs enriched for GWAS hits (e.g. malate and nitrate, 

fig. 7A and table S5). In contrast, many TF bindings overlap with GWAS hits for complex traits, 30 

which are known to be polygenic and influenced by a large number of genetic variants (e.g., days 
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after silking and days after anthesis, Fig. 2D, fig. S7B-C). The general trend for GWAS enrichment 

supports our hypothesis that non-coding region variations related to traits are often mediated by 

TF. Furthermore, our finding shows the potential of our data to connect sequence variation in cis 

to trans-regulators and highlights the regulatory networks implicated in complex phenotypes (Fig. 

2D). 5 

 

Real-world networks frequently exhibit a scale-free topology (17). To determine the feasibility of 

our data to pinpoint true regulatory relationships, we tested if a network derived from our data 

could fit such topology. We reshaped the regulatory data into a graph, adopting the ENCODE 

probabilistic framework to identify high confidence proximal interactions (P-value < 0.05) (4, 6, 10 

18). This approach renders a graph with 20,179 nodes (~45% of the annotated genes and ~77% of 

the leaf expressed genes, table S7). We evaluate the in-degree distribution (Fig. 3A), or number of 

edges towards each node, and found it to follow a linear trend in the log-scale (R2 = 0.882, P-value 

< 2e-16), as expected for power-law distribution (goodness of fit P-value = 0.67) (Fig. 3A). This 

distribution is a landmark of scale-free networks characterized for few nodes critical for 15 

information flow, having high in-degree (17). This suggests that the graph of TFs-targets derived 

from our data resembles a real-world network. 

 

True biological networks often exhibit topological and/or functional modularity (19, 20). We 

tested for this predicted property by contrasting the maximum modularity (21) in our network to a 20 

null distribution from an ensemble of random rewired graphs (H0: 1000 rewired graphs). The result 

confirmed that our network exhibits a significant increase in modularity (P-value < 0.05, fig. S8). 

We identified seven modules (Gephi resolution 1.0, table S8), each containing from ~27% to ~5% 

of the total nodes, and ~40% of the total edges occurring within the modules, suggestive of large 

information flow between them (Fig. 3B). 25 

 

We predicted that topological modularity should be related to function in known biological 

processes. GO enrichment analyses show that all seven modules were indeed enriched for specific 

GO terms (Fig. 3B and fig. S9). We identified two photosynthesis-related modules enriched in 

targets of GLK and CONSTANT(CO)-like TFs, known regulators of photosynthesis, circadian 30 

and light signalling (22, 23) (table S9). This suggests that the network structural and functional 
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split could contribute to fine tuning the regulation of different aspects of photosynthesis (Fig. 3C-

D). On the other hand, the presence of multiple TFs across modules to regulate genes in the same 

pathway suggests intricate mode of actions to coordinate transcription, in contrast to the classic 

view of a singular or few master regulators. Altogether, the topological and functional features of 

the regulatory graph provide validation of known TF to target gene interactions, and additional 5 

clues to understand a vast number of uncharacterized genes and TFs. 

 

With a genome larger than two billion bp, any given TF (avg. 6.8 bp) could have affinity for 

roughly a third of a million locations across the genome (24-25). Under this scenario, achieving 

the observed TF binding specificity would likely require extra cues. We predict that co-binding 10 

and combinatorial binding must be key for specificity. To test this, we created machine-learning 

models based on either sequence information or co-localization information (Fig. 1A). To model 

TF binding from sequence we applied a “bag-of-k-mers” (24) model to discriminate TF binding 

regions from other regions in the genome, which resulted in reliable models for all the TFs (5-fold 

cross-validation, average accuracy for each TF > 70%) (table S9, fig. S10). Using average k-mer 15 

weights from the models (table S10), we derived a distance matrix among TFs, and summarized 

TFs relationships (Fig. 4A). After removal of singleton families, we observed that for 85% of the 

TFs families, most of their members (>= 50%) cluster into the same group in a dendrogram (fig. 

S11).  

 20 

This observation prompted us to evaluate whether TF sequence preference has persisted across 

angiosperm evolution, as many TF protein families are well conserved. Using the top 1% of the 

predictive k-mers for each TF, we examined their similarity to a large collection of in vitro 

Arabidopsis TF binding position weight matrices (PWMs) (25). After removal of families that did 

not have a counterpart (or were poorly represented), 50 out of 81 (61%) of the evaluated TFs 25 

preferentially match PWMs to their corresponding family in Arabidopsis (P-value < 0.001, fig 

S12). This sequence preference conservation suggests strong constraint over more than 150 million 

years, which also agrees with a reduced SNP variation at the peaks (Fig. 2A).   

 

To model TF binding from co-localization, we adopted a machine-learning approach used in the 30 

ENCODE project to learn non-linear dependencies among TFs (4). To fit a model for each TF (i.e., 
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“focus TF” or context) we built a co-localization matrix, by overlapping peaks for the focus-TF 

with peaks of all remaining TFs (i.e., partners) (Fig. 1A). The co-localization model was aimed to 

discriminate between the true co-localization matrix and a randomized version of the same (26). 

The output of each model is a set of combinatorial rules that can predict TF binding. For each TF, 

the average of 10 models with independent randomized matrices have area under the receiver 5 

operating curve > 0.9 (table S12). The high performance of the model agrees with the hypothesis 

that co-localization has vast information content to determine binding specificity. 

 

Using the rules derived from the co-localization models, we scored the relative importance (RI) of 

each partner TF for the joint distribution of the set of peaks for a focus TF. TFs with large RI score 10 

are predictive of the binding of specific focus TF (fig. S13-14). For instance, the co-localization 

model for GLK2 suggests that MYBR26 is a top partner (table S12). The relationship between 

these two TFs was also suggested in the network view of the regulation of chlorophyll biosynthetic 

genes, and with the bag-of-k-mer models of the promoter of a photosynthetic gene (Fig 3B, 4B 

and fig. S15). Overall, the results of the co-localization model indicate a large number of possible 15 

combinations of TF bindings, that appear key to binding specificity. 

 

In this study, we present a bottom-up approach to systematically identify emergent properties of 

transcriptional regulation in plant leaves. To do so, we resolved binding profiles for 104 TFs in the 

maize leaf and describe how TF binding sites massively overlap with open chromatin regions, are 20 

conserved, and enriched in eQTLs and GWAS hits, suggesting that binding loci are under selection 

and functional. Our TF-target dataset captures the backbone of a complex network that is scale-

free and shows a modular organization at topological and functional level. In the future, we foresee 

the incorporation of distal TF binding sites (~ 30% of the total) will enrich the topology of the 

proposed network. 25 

 

Finally, we generated quantitative and highly interpretable models of TF binding, and TF co-

localization. On a practical level, we expect these models to be integrated into pipelines to predict 

effects of non-coding variants, both common and rare, on TF binding, to pinpoint causal sites. The 

possibility to predict and generate novel variation not seen in nature could fundamentally change 30 

future plant breeding. 
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Fig. 1. The regulatory landscape of the maize leaf. (A). Overview of the analytical approaches 

used to decode the regulatory architecture of the maize leaf. TF ChIP-Seq and ATAC-Seq were 

performed using maize leaf protoplasts. The dataset was used in the following analysis (i) 

overlapped TF binding loci with phenotype-associated SNPs for an assortment of traits; (ii) 

reshaped TF binding data into the regulatory network; used TF binding regions to train models 5 

that can predict binding from either (iii) sequence information or (iv) TF co-localization 

information. (B) Genome-wide distribution of TF binding loci nearby (+/- 2.5 kb) to the annotated 

genes, and remaining distal regions. (C) Density plots corresponding to distances between 

annotated genes (grey), distances of TF binding loci (pink) and open chromatin regions (blue) to 

closest annotated gene after excluding regions within or overlapping with gene bodies. (D) 10 

Distribution of the count of distinct TFs that overlap with open chromatin regions.   
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Fig. 2. Characterization of nucleotide diversity under regulatory regions. (A) Mean SNPs 

density calculated in sliding windows of 100 bp bins flanking TF binding summits, and normalized 

by mappability rate. (B) 95% confidence interval for the enrichment of SNPs associated to 

variation in mRNA levels (eQTLs) vs. non eQTLs SNPs, and relative to control regions for 5 

different sets of genomic regions (C) Proportion of phenotype-associated GWAS hits for an 

assortment of traits overlapping to TF binding loci. Traits in which the enrichment was statistically 

significant are labelled with an asterisk (D) Manhattan plot of GWAS for days after anthesis. 

Highlighted GWAS hits overlap with binding regions for a group of TFs (PRR5, ELF3, COL3, 

COL7, COL18 and DOF3/PBF1) associated to photoperiod variation (10, 11).  10 
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Fig. 3. Properties of the regulatory network. (A) Distribution of node in-degree values and the 

QQ-plot version of the same distribution showing the power-law fit (dashed line). (B) A graph 

diagram to summarize the modular structure of the network. Each module is represented as a meta-5 

node (circles) with size proportional to the number of nodes within. Meta-nodes are linked with 

meta-edges with the width proportional to the number of edges within (~40%) or across modules 

(~60%). Modules are named according to their enriched GO terms (C-D) Detailed view of two 

photosynthesis pathways enriched in modules 5 and 4, respectively. 
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Fig. 4. Models of TF binding. (A) 104 TF clustered by sequence binding similarity (predicted k-

mer weights) derived from the sequence models. (B) Genome browser view of the promoter region 

of the light-harvesting complex of PSI gene (Lhca, Zm00001d015385). Occlusion analysis for TFs 5 

targeting Lhca showing how the bag-of-k-mers model could highlight putative regulatory positions 

at base pair resolution. 
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