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Abstract

Genomic selection and gene editing in crops could be enhanced by multi-species, mechanistic models
predicting effects of changes in gene regulation. Current expression abundance prediction models require
extensive computational resources, hard-to-measure species-specific training data, and often fail to
incorporate data from multiple species. We hypothesize that gene expression prediction models that
harness the regulatory network structure of Arabidopsis thaliana transcription factor-target gene
interactions will improve on the present maize models. To this end, we collect 147 Oryza sativa and 99
Sorghum bicolor gene expression assays and assign them to maize family-based orthologous groups.
Using three popular graph-based machine learning frameworks, including a shallow graph convolutional
autoencoder, a deep graph convolutional autoencoder, and the inductive GraphSage strategy, we encode
an Arabidopsis thaliana integrated gene regulatory network (iGRN) structure and TF gene expression
values to predict gene expression both within and between species. We then evaluate the network
methods against a partial least-squares baseline. We find that the baseline gives the best predictions
within species, with Spearman correlations averaging between 0.74 and 0.78. The graph autoencoder
methods were more variable with correlations between -0.1 and 0.65. In particular, the GraphSage and
deep autoencoders performed the worst, and the shallow autoencoders performed the best. In the most
challenging prediction context, where predictions were in new species and on genes that were not seen,
we found that the shallow graph autoencoder framework averaged around 0.65. Unlike initial thoughts
about preserved network structure improving gene expression predictions, this study shows that
within-species predictions only need simple models, such as partial least squares, to capture expression
variations. In cross-species predictions, the best model is often a more complex strategy utilizing
regulatory network structure and other studies’ expressions.

Introduction 1

In recent years, gene expression prediction models have been introduced as a computational tool to 2

identify key regulatory elements that influence the effects of disease variants [1] or describe the nature of 3

regulatory grammars [2–4]. Because of the ability of the plant genetics community to study variations of 4

complex traits, understand the evolutionary processes behind these traits, and target sites for gene 5

editing, expression prediction holds a lot of research potential. To gather the necessary resolution to 6

explore these concepts, researchers generally focus on the systematic role of regulatory machinery that 7

facilitates variation in gene expression over space and time [5, 6]. Gene regulation requires elaborate 8

interplay between linked (cis) and distant (trans) regulatory elements. In the cis-case, DNA 9

sequence-specific transcription factors bind to the DNA to modulate nearby gene expression In addition 10
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to transcription factors, untranslated regions of RNA modulate gene expression through length variation 11

and through offering variants of mRNA from the same gene [7]. In plants, mutations in these 12

cis-regulatory regions contribute to domestication [8, 9], adaptation [10,11], and, in some cases, are the 13

target of allele-generative pursuits in next-generation breeding approaches [12,13]. 14

Across plant species, the relationship between genes and transcription factors has been one of the 15

main focus for understanding the transcriptomic patterning. For example, just under 50% of orthologous 16

genes between Arabidopsis thaliana and Oryza sativa, species that diverged about 150 million years 17

ago [14], show similar transcriptomic responses while under abiotic stress [15, 16]. Further, the different 18

responses were due to changes in regulatory elements, such as transcription factor expression. It has also 19

been shown that tissue-specific transcription factor activity induces patterning in gene target 20

specificity [17]. Due to the multidimensional relationship between tissue, experimental conditions, and 21

species, few studies have attempted to model gene expression patterns between species. 22

Gene regulatory networks (GRNs) represent the emergence of transcriptomic patterning by providing 23

a graph representation of the TF to target gene relationships. GRNs have been crucial to understanding 24

not only the interactions between genes, but also the coordinated targeting of specific genes by multiple 25

transcription factors [18,19]. Assays, such as CHIP-seq and ATAC-seq, inform the majority of the 26

transcription factor-gene relationships in these networks, and with sufficient experimental data, these 27

networks can also integrate the 3-D chromatin structure and dynamics to reveal complex, time-sensitive, 28

and species-specific players in gene regulation [20–23]. Unfortunately, these combinations of experiments 29

can be expensive, hard to measure, and computationally difficult to utilize. 30

There have been several recent successes in overcoming the limitations of predicting gene expressions 31

or other large-scale datasets using deep learning. Generally, deep learning refers to computational 32

methods that aim to learn a hierarchical representation of data by functionally relating the data in many 33

layers [24]. In plant data, these models have learned to predict chromatin state from sequence [25], 34

identify and classify key stress-responsive genes [26], and detect seasonal changes across fields [27]. In 35

addition to these successes, many state-of-the-art models take in not only numerical data but also the 36

structure of the relationships between the data. Traditionally, non-Euclidean graphical structures 37

represent these complex, multidimensional relationships. The models, graph neural networks, use the 38

same general machinery that many deep learning methods use, but take special care to ensure that the 39

representation of the data is preserved through each abstraction. Graph neural networks have shown 40

particular success in exploring disease and pest relationships in Arabidopsis thaliana, inferring 41

protein-protein interactions key to biological functions [28], and finally, inferring gene expression in mice, 42

given co-expression and gene interaction networks [29]. 43

Graph neural networks solve problems typically associated with complex, non-Euclidean dimension 44

reduction, image extraction, and link or node prediction. Strategies to solve these problems can be 45

categorized into spectral and spatial-based approaches. Spectral approaches, such as the common graph 46

convolutional network (GCN), focus primarily on the graph spectrum, or the set of eigenvectors and 47

eigenvalues, associated with the adjacency matrix of the graph [30]. In these cases, the graph spectrum is 48

used to map its structure to a Euclidean space for which convolutional operations can be performed 49

similarly to convolutional neural networks. Spatial approaches work at the node and neighboring 50

node-edge level to aggregate information across nodes. Due to this aggregation, many special methods 51

are amenable to large networks. For example, GraphSage [31], aggregates node data in order to create 52

low dimensional representations of unseen data. This aggregation to embedding step makes GraphSage a 53

natural choice for large biological studies, and researchers use the method to explore large-scale 54

predictions for large-scale protein-protein interactions [32] and drug-disease relationships [33]. 55

However, to create the models, care must be taken to preserve the broad evolutionary relationships. 56

Plant systems, because of genome duplication and adaptive responses to selection pressures, generally 57

have larger expansion of transcription factor families than animal ones [34]. These expansions, however, 58

often act in parallel, which preserves researchers’ aim of accurate and precise global quantification of 59

TF-gene relationships. In Arabidopsis thaliana, researchers mined thousands of experimental and 60

computational data to find the most likely interactions between genes and transcription factors [35]. 61

Their goal was to use machine learning machinery to infer a network that was biologically supported and 62
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could be used to functionally validate biological hypotheses. The resulting network identified key 63

regulators of reactive oxygen stress response [35]. In a cross-species comparison of gene regulatory 64

networks, researchers inferred stress-responsive sub-networks that are evolutionarily conserved between 65

Marchantia polymorpha and Arabidopsis thaliana, allowing for new hypotheses and methods that can 66

provide insight into divergent species’ gene regulatory mechanisms [36]. In this work, we use popular 67

network embedding-based deep learning methods to predict gene expression in maize experiments. We 68

design the machine learning task around the embedding of a regulatory network structure from the 69

model species, Arabidopsis thaliana. Upon training the model on Zea mays, Arabidopsis thaliana, and 70

Sorghum bicolor, we observe improved correlations between predictions and observed values relative to 71

previous regression and machine learning models. Finally, we examine the characteristics of the 72

regulatory network that may affect the prediction of gene expression. 73

Materials and methods 74

Raw data and preprocessing 75

Gene expression data for Zea mays, Sorghum bicolor, and Oryza sativa was downloaded and processed as 76

in [37]. In summary, datasets were downloaded from the National Center for Biotechnology Information 77

(NCBI) Sequence Read Archive (SRA), trimmed and quality checked with FastQC and Sickle, and 78

aligned to Maize V4, Sorghum 3.1.1, and Oryza sativa V7 genomes with HISAT2 [37], and read counts 79

were normalized to transcripts per million with Stringtie. Identifications of transcription factors for Zea 80

mays, Sorghum bicolor, and Oryza sativa were downloaded from the Plant Transcription Factor Database 81

website [38]. Orthologous groups based on gene families were recovered from the PLAZA 4.5 82

database [39]. The Arabidopsis integrated gene regulatory network (iGRN) was downloaded from the 83

supplementary of [35]. The handling of the data sets was done with custom R scripts that utilize the 84

data.table and dplyr packages [40] were used to process the data sets. All data, including code to 85

generate input formats, are enclosed in the code repository on Zenodo (doi: 10.5281/zenodo.7194372). 86

Supplemental Figure 1 shows the flow chart of the data preprocessing. 87

Orthogroup assignments 88

For each species, gene expression matrices were transformed into orthogroup matrices by 89

cross-referencing the PLAZA gene family-based orthogroups [39]. To create an orthogroup expression 90

matrix, the mean orthogroup expression per experiment was taken across replicates. Expression levels 91

were log-transformed and normalized by the standard deviation of an orthogroup’s expression across 92

experiments. The Arabidopsis iGRN nodes were similarly transformed into orthogroups. The nodes and 93

their corresponding edges were collapsed to create a network with orthogroups as the nodes rather than 94

the original Arabidopsis genes. The resulting network contained 756 transcription factors and 18771 95

target genes. From this list, an adjacency matrix was created to represent the network’s connections. 96

Model splitting 97

Training and testing splits were made at the orthogroup and experimental levels. In the case we predict 98

expression on orthogroups that the model has seen, we perform an 80:20 train-test split across 99

experiments. To ensure there is minimal experiment-experiment leakage, we completely mask these 100

values during the training process. In the case we predict expression on genes that have not been seen by 101

the model, we do a two part procedure for training. We first perform an 80:20 split on the experiments. 102

Then, we perform another 80:20 split on the orthogroups. The final predictions are completed on the 103

unseen genes within the test experiments. 104
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Model development 105

Expression abundance predictions were made with two architectures, structural embedding with random 106

forest (graph autoencoder models) [33] and a partial least squares model. All models structural 107

embedding models were constructed using Python 3 with the Pytorch Geometric [41] and Scikit-learn 108

libraries. Models were tested in 4 scenarios: 1) within-species prediction of the unseen expression profile 109

when all genes have been seen by the model, 2) prediction in maize from a single species when all genes 110

have been seen by the model, 3) prediction of unseen expression profile when all genes have not been 111

seen by the model, and 4) prediction of maize expression profiles from all species. 112

Expression predictions were done with two architectures: structural embedding with random forest 113

prediction layer (graph autoencoder models) and a baseline partial least squares model. We tested three 114

main architectures for the GAE-a shallow graph convolutions, deep graph convolutions, and Graph Sage. 115

The random forest layer was constructed with ⌊n
3 ⌋ decision trees, as suggested by [42]. All structural 116

embedding models were constructed in Python 3 with the Pytorch Geometric library [41]. Predictions 117

were made within each related species and into maize (target species). We tested both the PLS and 118

structural embedding random forest architectures on a new test set containing genes which the model 119

has been trained on. In structural embedding models, we also tested in situations where the predicted 120

genes’ expression profiles are masked during training (Supplementary Figure 1). 121

Partial least squares baseline 122

To establish a baseline performance, we use a partial least squares model. In this case, consider XnonTF 123

to be a gene expression matrix consisting of orthogroups not associated with transcription factors. 124

Similarly, let XTF be a gene expression matrix of only transcription factor orthogroups. We want to 125

predict each column of the non-transcription factor, XnonTF , from a combination of the columns of XTF . 126

Partial least squares transforms the space of predictors in XTF to orthogonal variables, which we then 127

use for prediction (Fig1). We chose to use the PLS2 algorithm which both Y’s and XTF s variable spaces 128

are simultaneously modeled. Here, the underlying model, with components T and U , loading P and Q, 129

and error terms E and F becomes, 130

XTF = TPT +E (1)

XnonTF = UQT + F (2)

We aim to maximize the covariance of T and U so that we can perform a regression such that 131

X̃nonTF = XTF β̃ + β0 (3)

To find the optimal number of components cross-validation was performed, resulting in choosing 3 132

components. 133

Graph autoencoder with random forest model 134

To create a low-dimensional representation of the expression and network data, we use a standard 135

non-variational graph autoencoder, as seen in [29]. In this method, we consider input expression Xtot as 136

a matrix with N genes and Q experiments and a graph G, as the Arabidopsis orthogroup iGRN. The 137

encoder block of the autoencoder maps the regulatory network and gene expression features into a latent 138

embedding (Fig 1). Then, in order to determine the validity of the embedding, the model decodes this 139

embedding back into the input space and the cross-entropy loss of the reconstruction is measured. The 140

predicted expression values are obtained using this latent representation Z such that 141

X̃Tot = f(Z) (4)

where X̃tot is the predicted matrix of the input expression values and f denotes a random forest with 142

a max depth scaled by ⌊Q⌋ with ⌊⌋ denoting the floor operation. 143
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To establish performance within this framework, we consider the use of two major encoding schemas, 144

induction-based and convolution-based methods. For the induction-based method, we use the 145

GraphSAGE layer available in PyTorch Geometric [41]. The GraphSAGE algorithm works by 146

propagating hidden representations of the nodes (genes) to their neighbors [31]. Here, by stochastic 147

descent, the combination of weight matrices and the mean aggregation function is tuned so that genes 148

with similar behavior have similar representations within the resulting embedding [31]. Thus, a node, i, 149

representation, h, for a neighborhood size of k is given by, 150

hk
i = W1(h

k−1
i ) +W2aggregatej∈N(i)∪i(h

k−1
j ) (5)

where the aggregate function is given by mean pooling and W1 and W2 are trainable weight matrices. 151

The convolutional framework takes into account the high order of structure in neighborhoods around 152

nodes through the use of convolutional layers [43]. Hidden representations of those high-order structures 153

are then merged together to form each node’s hidden state [43]. A single layer can be seen as 154

hk
i =

∑
j∈N(i)∪i

1√
deg(i) ∗

√
deg(j)

.(Whk−1
j ) (6)

where W is a trainable weight matrix, deg(i) and deg(j) are the number of neighbors of node i and j 155

respectively [43]. For the shallow autoencoder, we choose to use a single convolutional layer with hidden 156

dimension of size 32. For the deep autoencoder, we choose three convolutional layers with a hidden 157

dimension size of 32. 158

Model evaluation 159

For each model task, we will use the Spearman rank correlation to compare the expression level of the 160

observed and predicted orthogroup. Spearman’s is given by: 161

rs =
Cov(R(x), R(y))

σR(x), σR(y)
(7)

where Cov(R(x), R(y)) represents the covariance of the x and y ranks and σR(x),σR(y) represents the 162

standard deviation of x R(x) and R(y), respectively. 163

Network statistics 164

To understand the predictions with respect to structural embedding, we looked at three key network 165

statistics: Degree centrality [30], Kleinberg Authority [30], and Harmonic centrality [44]. Degree 166

centrality directly measures the total amount of edges connected to an individual node [30]. That is, for 167

node i in the graph G, degree centrality is given by the degree of i: 168

cd = di(G) (8)

The harmonic centrality measure extends the degree of centrality by taking into account the distance 169

between node i and all other nodes. To mitigate the effects of extreme high and low distances, the 170

harmonic centrality calculation aggregates the inverse distances between nodes [30]. That is, for two 171

nodes i, j: 172

ch =
∑
i ̸=j

1

dist(xi, xj)
(9)

Finally, to examine the hub-like nature of each node, we calculated the Kleinberg Authority metric. 173

Here, we take the first eigenvector of ATA, where A is the adjacency matrix of graph G. The 174

eigenvalues of this vector gives a measure of how much information a node has (authority) and how 175

well-connected the node is to other informative nodes (hubness) [44]. 176
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Results 177

Prediction data and model parameters 178

To predict the abundances of gene expression between experiments, we collected RNA-seq from Sorghum 179

bicolor, Oryza sativa, and Zea mays and an Arabidopsis thaliana gene regulatory network. For the gene 180

regulatory network, we took advantage of the Arabidopsis thaliana integrated gene regulatory network 181

(iGRN) [35]. This network consists of 1,491 transcription factors and 31,393 target genes (about 27,000 182

protein-coding and a mixture of long noncoding RNAs and replicated transposable elements ), resulting 183

in a total of 1.9 million interactions weighted by the strength of a biologically supported interaction [35]. 184

In order to reduce the number of parameters model estimates, we thresholded the network edges to only 185

include an edge if its weight is at least 0.9. This gave a resulting network of about 250,000 interactions. 186

For gene expression abundances, we used log2-transformed gene expression levels (in transcripts per 187

million) that were collected in Sorghum bicolor, Oryza sativa, and Zea mays. We collapsed genes into 188

orthogroups to allow for cross species comparisons. Table 1 describes a summary of the number of 189

orthogroups, experiments, and transcription factors for each species. 190

To set up a baseline for comparison with graph networks, we predicted non-transcription factor 191

expression abundance from transcription factor expression using a partial least squares regression (Fig1). 192

For the graph neural networks, we predicted expression under a graph autoencoder framework (Fig 1) 193

with three different strategies for encoding the graph into a latent space. The first two strategies, deep 194

and shallow convolutions, utilize graph convolutional layers, and the third strategy, GraphSAGE, uses an 195

inductive convolutional layer that finds a mean representation of a node based on the information of 196

nodes in its neighborhood. The representation of these models is then passed through a random forest 197

model to predict gene expression profiles under different conditions. The models were tested in four 198

scenarios: 1) prediction within species of unseen nonTF expression profiles when all genes have been seen 199

by the model, 2) prediction in maize from a single species when all genes have been seen by the model, 3) 200

prediction of unseen expression profile when all genes have not been seen by the model, and 4) prediction 201

of maize expression profiles from all species.

Table 1. Summary of Input Data for Gene Expression Prediction Models.

Species Number of Transcription Factors Number of Orthogroups Number of Experiments
Zea Mays 3336 18449 454

Sorghum bicolor 2665 16961 99
Oryza sativa 2409 20538 147

202
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Fig 1. Schematic of Cross Species Prediction Model Flowchart of predicting cross-species gene
expression in maize. First, we assign orthogroups to each of the species, Zea mays, and Sorghum bicolor.
Then, we gather species’ gene expression data and the Arabidopsis integrated gene regulatory
network(iGRN). The network is converted to an adjacency matrix, and species expression data is
log-normalized and transformed into an orthogroup-by-condition expression matrix. Next we establish a
baseline prediction model using partial least squares. We then construct predictions from three different
encoding strategies for the encoding of the expression and network– Shallow Graph Convolutions, Deep
Graph Convolutions, and Graph Sage. The resulting latent representation is then used in a random
forest model in order to predict unseen expressions across various conditions. Finally, we evaluate the
models by examining the Spearman correlation between observed and predicted expression profiles. To
determine the drivers of predictions, we also examine expression statistics versus model performance and
network statistics versus model performance relationships.

Partial least squares baseline performance 203

Before using the gene regulatory network model, we performed a partial least squares regression with 204

three components. The partial least squares model does not use any information from the gene 205

regulatory network’s structure. For each species, we predicted the expression profile of 1434 genes across 206

16 experiments and compared those to the observed abundances. To assess the performance of the model 207

we decided to use Spearman’s rank correlation. S. bicolor performed the best at a correlation of mean 208

0.80, but Z. mays (ρ = 0.77) and O. sativa (ρ = 0.76) correlated well. Figure 3a gives the distribution 209

of the mean correlations experiments with respect to each species. 210

For the next baseline, we wanted to see how well each species does to naively predict maize ortholog 211

expression. To do this, we separated all of the maize ortholog expressions from all of the other species. 212

Next, we used each species’ ortholog profiles to predict the corresponding ortholog’s profile. While 213

overall lower than maize just predicting within itself, we found that the average Spearman correlations 214

were still comparable to within species predictions. When we used S. bicolor to predict maize, we get 215

correlation of 0.77. Similarly, when we used O. sativa to predict maize expressions we got correlation of 216

0.74, we used wanted to look at how well PLS does when we are using O. sativa and S. bicolor 217

orthologs to predict maize expression abundance. For the cases when we used O. sativa and S. bicolor, 218

we find that the mean Spearman correlations are 0.74 and 0.78, respectively. These results show that 219

regardless of species combination, partial least square models tend to estimate gene expression similarly 220

between and within species. 221
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Fig 2. Baseline partial least squares prediction performance of within-species and
between-species in terms of Spearman correlation coefficient Density plot of Spearman
correlation between predicted and observed gene expression values across each species. (a) Distribution
of the mean Spearman correlations for orthogroup expression predictions within each species. (b)
Distribution of mean Spearman correlations for maize orthogroup expression predictions from O. sativa,
S.bicolor, and the combination of O. sativa and S.bicolor.

Graph autoencoder model performance not comparable for within-species 222

predictions 223

To test the hypothesis that graph structure would improve baseline predictions, we implemented a graph 224

autoencoder (GAE) using three different encoder architectures. We trained each model within Oryza 225

sativa, Sorghum bicolor, and Zea mays to predict expression profiles within each species. For each 226

species. the training sets were 75% of each species’ orthogroups. To ensure, no data leakage, we masked 227

the 25% test set during the training process. We ran each model for a total of 200 epochs with a learning 228

rate of 0.001. The first method, Deep GAE, performed poorly in all species with mean Spearman 229

correlations of 0.116, 0.179, 0.117 for Oryza sativa, Sorghum bicolor,and Zea mays, respectively. The 230

inductive method, GraphSage, also did not perform well within species with mean correlations of 0.054, 231

0.052, and -0.015. The best performing method, the shallow graph autoencoder, gave mean predictions 232

of 0.46 in Oryza sativa, 0.56 in Sorghum bicolor and 0.61 in Zea mays. Figure 3 shows the distributions 233

of the Spearman correlations of the predictions. 234

Shallow graph autoencoders outperform complex strategies in cross-species 235

expression predictions 236

We next predicted in unseen maize gene expressions using the best performing strategy-the shallow 237

graph autoencoder. We used the shallow graph convolutional autoencoder in three models covering Z. 238

mays + O. sativa, Z. mays + S. bicolor, and Z. mays + O. sativa + S. bicolor. Again, we used the 239

transcription factor expressions as input to the model to predict the unobserved maize gene expression 240

profiles. Each model predicts 1435 unobserved maize genes across 217 experiments.In all three contexts, 241

the shallow graph allowed the predictions of these unseen genes in maize with ρ of 0.42 to 0.47 (Fig 4). 242
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Fig 3. Prediction performance of within-species autoencoder models in terms of the
Spearman correlation coefficient Density plot of Spearman correlation between predicted and
observed gene expression values across each species. Three strategies for mapping to latent spaces,
Shallow Graph Convolutions, Deep Convolutions, and Graph Sage were utilized across Oryza sativa,
Sorghum bicolor, and Zea mays.

Fig 4. Distribution of the predictive performance of the shallow graph convolutional
autoencoder for the abundance of maize expression Density plot of predictive performance
Spearman Correlation of graph convolutional autoencoder. Predictive performance (x-axis) is given as
the Spearman Correlation between observed and predicted orthogroup expressions. Plots are colored
according to the species at hand. Dashed, vertical lines represent the mean of each distribution.
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Graph autoencoders allow for predictions in never-before-seen samples 243

To test the utility of using a graph autoencoder for gene expression predictions, we predicted gene 244

expression in genes which were previously unobserved in the training. To do this, we first made sure that 245

any genes the model could possibly predict would be included are accounted for in the iGRN. Next, we 246

used the three autoencoder strategies to predict unobserved genes in masked experiments within each 247

species. We trained each model for 2000 epochs with a learning rate of 0.001. Just as with the within 248

species model, we note that the GraphSage and Deep autoencoder strategies performed the worst. The 249

deep autoencoder had within-species prediction performances for O. sativa, S. bicolor, and Z.mays of 250

-0.10, 0.31, and 0.11, respectively. GraphSage had correlations of 0.01, 0.02, and 0.002 for O. sativa, S. 251

bicolor, and Z.mays, respectively. The shallow autoencoder, however, performed surprisingly well 252

compared to the observed gene, within-species baselines with correlations of 0.47 - 0.53 (Fig 5). 253

Fig 5. Distribution of predictive performance of shallow graph convolutional autoencoder
for maize expression abundance Density plot of predictive performance Spearman Correlation of
graph convolutional autoencoder. Predictive performance (x-axis) is given as the Spearman Correlation
between observed and predicted orthogroup expressions. Plots are colored according to the species at
hand. Dashed, vertical lines represent the mean of each distribution.

Predictive performance is not strongly driven by network structure or 254

variation in expression 255

Our final hypothesis was that structure of the Arabidopsis iGRN and the intensity of gene expression 256

drives model prediction accuracy. In order to test the hypothesis, we plotted the maize cross-species 257

prediction accuracy against network descriptive statistics and expression statistics. (Figure 4a) and 258

expression statistics (Figure 5). In the case of the network statistics, there was little to no negative 259

correlation between the measure of Log10-centrality (ρ = 0.051) and Kleinberg Authority (ρ = 0.055) 260

and harmonic centrality (ρ = 0.022). These findings indicate that the influence of network structure on 261

the model is minimal. For the expression variation statistics, we use Spearman correlation to compare 262

overall gene expression mean, median, and variance with predictive performance. Just as with network 263
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statistics, we find there is a very slightly negative relationship between mean (ρ = −0.028), median 264

(ρ = −0.027), and variance (ρ = −0.0058), but we note that these values are not significant. 265

Fig 6. Relationships between shallow graph convolutional autoencoder performances and
key descriptive statistics (a) Relationship between three common network measures, Degree
Centrality, Kleinberg Authority, and Harmonic Centrality, with the Spearman correlations for predicting
maize expression abundance with a shallow graph autoencoder. (b) Relationship between descriptive
statistics about the expression data, mean, median, and variance, with the Spearman correlations for
predicting maize expression abundance with a shallow graph autoencoder.

Discussion 266

Gene expression inference across species, experiments, and time require effective technological 267

frameworks, carefully curated data, and powerful mathematical frameworks. In traditional gene 268

expression inference frameworks, such as the LINCS linear regression-based platform, there is little focus 269

on the non-linearity of gene expression. We present a way to utilize the gene regulatory network’s 270

nonlinear connections in a prediction framework that allows for the prediction of gene expression values 271

for unobserved genes in unobserved experiments and is comparable to within-species predictions. Our 272

results suggest that gene expression prediction accounting for discrete biological network structure can 273

be used to achieve moderate-accuracy target gene expression values. 274

We note that there is a large imbalance between the accuracy of predictions in the within-species 275

models. In Sorghum bicolor, this discrepancy is likely to be from a few genes which are highly variable. 276
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In Zea mays and in Oryza sativa, our hypothesis is that this discrepancy is likely due to the different 277

types of tissue classes included in the dataset. There is evidence that the transcription factor background 278

can be attributed to the determination of biological roles such as tissue specificity [45], gene function [17], 279

and cellular behavior [46]. In addition to the overall differences per species, there is a wide range of 280

differences between each of the model types. 281

One of the main results of the study is that the shallow convolution operator consistently 282

outperforming the more complex models. We hypothesize this is due to a combination of the network 283

structure and the ability for simpler model to generalize on new data. For the network case, we decided 284

to take the most representative edges in the Arabidopsis iGRN. Deeper GNNs and GraphSAGE models 285

inform their embedding projections by taking in information from surrounding nodes. By paring down 286

the network at hand, these models put heavy emphasis on nodes that are already known to have a large 287

bias toward genes that are known and expressed. This means that the 2nd and 3rd order relationships 288

that may be in the larger, less thresholded network are largely unseen. This can lead to 289

under-accounting for certain relationships and over-accounting for relationships that actually involve 290

more connections. The relationships at question, however, must generalize across species and expression 291

pattern. As seen in genomic prediction and language modeling, the less complex model often performs 292

better than the more complex models [47]. 293

One of the key problems in this analysis is that we only use one data modality, RNA-seq. The 294

landscape of gene expression is rather complex and requires not only understanding the non-linearity of 295

regulator-target relationships, but also understanding the interactions between regulatory elements that 296

cannot be identified exclusively in assays such as RNA-seq.This type of modeling has been done with 297

models such as sequence-specific models which use wide ranges of regulatory information to guide the 298

model’s training and testing. In other models, such as GC-merge [48], cis-regulatory information from 299

Chip-Seq integrates expression measurements with a deep graph convolutional framework much like the 300

one we utilized. In the future, prediction across species using more types of readily-accessible data could 301

provide a more biologically informed way to power these sophisticated deep-learning models. 302
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